苗希望等:典型铁合金渣的资源化综合利用研究现状与发展趋势 667. 表2典型铁合金渣用于水泥混合材的部分研究成果 Table 2 Some results of the research on the uses of some ferroalloy slags as raw materials used in cement admixture Types Research results Reference The authors found that the cement products with 15%slag in mass showed good chemical resistance.After Silicon-manganese 56-d of exposure to the corrosion solution,the weight of the cement products was basically the same.Besides, Frias et al.u吲 slag the addition of silicon manganese slag reduced the void structure,which is conducive to resisting the external extreme environment. The authors prepared low-calorie composite cement using silico-manganese slag,fly ash and medical waste, Silicon-manganese which achieved a 28-d compressive strength of 34 MPa and a stability value of 8.95,meeting the requirements Singh et al. slag of the construction industry. The authors prepared the cement slurry mixed with high magnesium nickel-iron slag,and found that the water demand and setting time did not change significantly when it was used to replace 50%cement.Under the High-magnesium accelerated curing at 80 C for 120 d,although the magnesium content was high,the product did not expand nickel-iron slag Rahman et al.7 because the magnesium existed in the form of stable Mgolivine ferrite and did not participate in the hydration reaction. The authors prepared the cement with 20%blast furnace nickel-iron slag.Compared with pure cement Blast furnace products,it required less water and had a longer setting time.The addition of nickel iron slag would reduce the nickel-iron slag hydration rate in the early stage,and increased the strength of its products in the later stage,achieving a 28-d Katsiotis et al. compressive strength greater than 45 MPa. 学激发剂有苛性钠以及含碱性元素的硫酸盐、硅 100 酸盐和碳酸盐等 80 (1)机械激发 Allahverdi与Ahmadnezhad22用球磨机械激发 方式研究了活性低的空气缓冷硅锰渣作为水泥混 40 合材的可能性.结果显示经过球磨激发后,含有 M 35%质量分数的硅锰渣并不会改变其凝固时间, 20 混合水泥材满足标准规格的所有化学要求,并且 0 没有出现体积不稳定性的问题 50 100150200250300350 Time/min Kumar等2l发现用NaOH激活的硅锰渣水泥 图2不同机械激发方式下的水化热的积累量随时间的变化(VM:偏 的强度和凝结时间都要比同条件的高炉渣水泥的 心振动磨;AM:盘磨;BM:球磨) 低,于是在此基础上研究了球磨、盘磨和偏心振动 Fig.2 Cumulative heat under C-S-H peak with different mechanical 磨三种机械激发方式对水泥材料的水化和性能的 excitation modes plotted against time (VM:eccentric vibratory milling, 影响.盘磨的颗粒粒径最小,依次是偏心振动磨和 AM:attrition milling.BM:ball milling) 球磨:球磨样品由于颗粒较大,完全凝固的时间较 Na2SO4,NaF和Al2(SO4)3)对水化作用的影响.当 短,但是需要48h才能完全硬化;盘磨和振动磨只 其质量分数分别为0.6%,1.2%,0.6%和0.7~0.9%时, 需要4h就可以完全硬化.偏心振动磨对于提高渣 对水化作用最明显.水泥基材料在3和28d的抗 的活性最有效.3种激发方式下C-S-H形成时的 压强度分别提高了50.1%和22.4%.其中NaC1的 水化热随水化时间的关系如图2所示 作用最明显,其次是Na2SO4和NaF,Al2(SO43作用 (2)化学激发 最弱.复合激发剂可以增加钙矾石和C-S-H凝胶 刘梁友等利用30%低钙镍铁渣制得复合水 的形成,从而促进水泥基体的密实度.硫酸钠可以 泥材料,并研究了单一氧化钙,水玻璃和硫酸钠对 促进粉煤灰的火山灰反应,增加Ca(OH)2的消耗, 其化学活化的差别.研究发现氧化钙,水玻璃和硫 从而促进水泥浆体的水化反应,增加复合水泥后 酸钠最佳掺质量分数为3.0%,1.5%和1.0%.水玻 期的强度. 璃激发效果相对氧化钙更好,这是由于水玻璃中 对于水淬充分的硅锰渣、中低碳铬铁渣和高 的硅酸钠水解生成NaOH与硅胶,OH可以将镍铁 炉镍铁渣,活性高,易磨性好,因此可以与熟料直 渣中的玻璃体结构进行解体,同时硅胶也将参与 接混合使用;高碳铬铁渣和电炉镍铁渣,活性低, 水化反应,即水玻璃起到双重激发作用;单独的硫 易磨性差,可以作为原料制备水泥熟料.单一的机 酸钠激发效果不好 械激活或者化学激活对于加强前期强度有限,复 Zhou等2阿利用低碳铬铁渣,高炉渣和粉煤灰 合化学激活剂相对单一化学激活剂有更强的胶凝 制备水泥基材料,并研究了复合化学激发剂(NaCL, 作用.学激发剂有苛性钠以及含碱性元素的硫酸盐、硅 酸盐和碳酸盐等. (1)机械激发. Allahverdi 与 Ahmadnezhad[22] 用球磨机械激发 方式研究了活性低的空气缓冷硅锰渣作为水泥混 合材的可能性. 结果显示经过球磨激发后,含有 35% 质量分数的硅锰渣并不会改变其凝固时间, 混合水泥材满足标准规格的所有化学要求,并且 没有出现体积不稳定性的问题. Kumar 等[23] 发现用 NaOH 激活的硅锰渣水泥 的强度和凝结时间都要比同条件的高炉渣水泥的 低,于是在此基础上研究了球磨、盘磨和偏心振动 磨三种机械激发方式对水泥材料的水化和性能的 影响. 盘磨的颗粒粒径最小,依次是偏心振动磨和 球磨;球磨样品由于颗粒较大,完全凝固的时间较 短,但是需要 48 h 才能完全硬化;盘磨和振动磨只 需要 4 h 就可以完全硬化. 偏心振动磨对于提高渣 的活性最有效. 3 种激发方式下 C‒S‒H 形成时的 水化热随水化时间的关系如图 2 所示. (2)化学激发. 刘梁友等[24] 利用 30% 低钙镍铁渣制得复合水 泥材料,并研究了单一氧化钙,水玻璃和硫酸钠对 其化学活化的差别. 研究发现氧化钙,水玻璃和硫 酸钠最佳掺质量分数为 3.0%,1.5% 和 1.0%. 水玻 璃激发效果相对氧化钙更好,这是由于水玻璃中 的硅酸钠水解生成 NaOH 与硅胶,OH−可以将镍铁 渣中的玻璃体结构进行解体,同时硅胶也将参与 水化反应,即水玻璃起到双重激发作用;单独的硫 酸钠激发效果不好. Zhou 等[25] 利用低碳铬铁渣,高炉渣和粉煤灰 制备水泥基材料,并研究了复合化学激发剂(NaCl, Na2SO4,NaF 和 Al2 (SO4 )3)对水化作用的影响. 当 其质量分数分别为 0.6%,1.2%,0.6% 和 0.7~0.9% 时, 对水化作用最明显. 水泥基材料在 3 和 28 d 的抗 压强度分别提高了 50.1% 和 22.4%. 其中 NaCl 的 作用最明显,其次是 Na2SO4 和 NaF,Al2 (SO4 )3 作用 最弱. 复合激发剂可以增加钙矾石和 C‒S‒H 凝胶 的形成,从而促进水泥基体的密实度. 硫酸钠可以 促进粉煤灰的火山灰反应,增加 Ca(OH)2 的消耗, 从而促进水泥浆体的水化反应,增加复合水泥后 期的强度. 对于水淬充分的硅锰渣、中低碳铬铁渣和高 炉镍铁渣,活性高,易磨性好,因此可以与熟料直 接混合使用;高碳铬铁渣和电炉镍铁渣,活性低, 易磨性差,可以作为原料制备水泥熟料. 单一的机 械激活或者化学激活对于加强前期强度有限,复 合化学激活剂相对单一化学激活剂有更强的胶凝 作用. 表 2 典型铁合金渣用于水泥混合材的部分研究成果 Table 2 Some results of the research on the uses of some ferroalloy slags as raw materials used in cement admixture Types Research results Reference Silicon‒manganese slag The authors found that the cement products with 15% slag in mass showed good chemical resistance. After 56-d of exposure to the corrosion solution, the weight of the cement products was basically the same. Besides, the addition of silicon manganese slag reduced the void structure, which is conducive to resisting the external extreme environment. Frías et al.[15] Silicon‒manganese slag The authors prepared low-calorie composite cement using silico-manganese slag, fly ash and medical waste, which achieved a 28-d compressive strength of 34 MPa and a stability value of 8.95, meeting the requirements of the construction industry. Singh et al.[16] High‒magnesium nickel‒iron slag The authors prepared the cement slurry mixed with high magnesium nickel‒iron slag, and found that the water demand and setting time did not change significantly when it was used to replace 50% cement. Under the accelerated curing at 80 ℃ for 120 d, although the magnesium content was high, the product did not expand because the magnesium existed in the form of stable Mg olivine ferrite and did not participate in the hydration reaction. Rahman et al.[17] Blast furnace nickel‒iron slag The authors prepared the cement with 20% blast furnace nickel‒iron slag. Compared with pure cement products, it required less water and had a longer setting time. The addition of nickel iron slag would reduce the hydration rate in the early stage, and increased the strength of its products in the later stage, achieving a 28-d compressive strength greater than 45 MPa. Katsiotis et al.[18] 100 80 60 40 20 0 50 100 150 200 Time/min VM AM Cumulative heat/(J·g BM −1 ) 250 300 350 图 2 不同机械激发方式下的水化热的积累量随时间的变化(VM:偏 心振动磨;AM:盘磨;BM:球磨)[23] Fig.2 Cumulative heat under C ‒S ‒H peak with different mechanical excitation modes plotted against time (VM: eccentric vibratory milling; AM: attrition milling; BM: ball milling)[23] 苗希望等: 典型铁合金渣的资源化综合利用研究现状与发展趋势 · 667 ·