正在加载图片...
第4期 包江桥等:固氮蓝藻的农业应用研究进展 583 versible structural change underlies mechanisms enabling desert[55]吴丽,张高科,陈晓国,等,生物结皮的发育演替与微生物 crust cyanobacteria to survive desiccation]. Biochimica et 生物量变化门环境科学,2014,35(4):1479-1485 Biophysica Acta (BBA)-Bioenergetics, 2015, 1847(10) WU L, ZHANG G K, CHEN X G, et al. Development and succession of biological soil crusts and the changes of micro- [51] COLICA G, LI H, ROSSI F, et al. Microbial secreted bial biomasses]. Environmental Science, 2014, 35(4) exopolysaccharides affect the hydrological behavior of in- 479-1485 duced biological soil crusts in desert sandy soils]. Soil Bi- [56] XU Y H, ROSSI F, COLICA G, et al. Use of cyanobacterial ology and Biochemistry, 2014, 68: 62-70 polysaccharides to promote shrub performances in desert soils [52] WU Y W, RAO B Q, wU PP, et al. Development of artifi- A potential approach for the restoration of desertified areas] cially induced biological soil crusts in fields and their effects logy and Fertility of Soils, 2013, 49(2): 143-152 on top soil]. Plant and Soil, 2013, 370(1/2): 115-124 [57]李寒,张晓黎,郭晓红,等.滨海盐渍化土壤中蓝细菌多样 53]LIN C S, WU JT. Tolerance of soil algae and cyanobacteria to 性及分布[微生物学通报,2015,42(5):957-967 drought stressP]. Journal of Phycology, 2014, 50(1): 131-139 I H, ZHANG X L, GUO X H, et al. Diversity and distribu- [54]张丙昌,王敬竹,张元明,等.水分对具鞘微鞘藻构建人 tion of cyanobacteria in coastal saline soils. Microbiology 藻结皮的作用[.应用生态学报,2013,24(2):535-540 China,2015,42(5):957-967 ZHANG B C, WANG J Z, ZHANG Y M, et al. Roles of (58 CUDDY WS, SUMMERELL B A, GEHRINGER MM, et al moisture in constructing man-made algal crust with Micoco- Nostoc, Microcoleus and Leptolyngbya inoculums are detri- leus vaginatus]. Chinese Journal of Applied Ecology, 2013 mental to the growth of wheat (Triticum aestivum L )under 24(2):535-540 salt stressP]. Plant and Soil, 2013, 370(1/2): 317-332 http://www.ecoagri.ac.cn第 4 期 包江桥等: 固氮蓝藻的农业应用研究进展 583 http://www.ecoagri.ac.cn versible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2015, 1847(10): 1267–1273 [51] COLICA G, LI H, ROSSI F, et al. Microbial secreted exopolysaccharides affect the hydrological behavior of in￾duced biological soil crusts in desert sandy soils[J]. Soil Bi￾ology and Biochemistry, 2014, 68: 62–70 [52] WU Y W, RAO B Q, WU P P, et al. Development of artifi￾cially induced biological soil crusts in fields and their effects on top soil[J]. Plant and Soil, 2013, 370(1/2): 115–124 [53] LIN C S, WU J T. Tolerance of soil algae and cyanobacteria to drought stress[J]. Journal of Phycology, 2014, 50(1): 131–139 [54] 张丙昌, 王敬竹, 张元明, 等. 水分对具鞘微鞘藻构建人工 藻结皮的作用[J]. 应用生态学报, 2013, 24(2): 535–540 ZHANG B C, WANG J Z, ZHANG Y M, et al. Roles of moisture in constructing man-made algal crust with Micoco￾leus vaginatus[J]. Chinese Journal of Applied Ecology, 2013, 24(2): 535–540 [55] 吴丽, 张高科, 陈晓国, 等. 生物结皮的发育演替与微生物 生物量变化[J]. 环境科学, 2014, 35(4): 1479–1485 WU L, ZHANG G K, CHEN X G, et al. Development and succession of biological soil crusts and the changes of micro￾bial biomasses[J]. Environmental Science, 2014, 35(4): 1479–1485 [56] XU Y H, ROSSI F, COLICA G, et al. Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: A potential approach for the restoration of desertified areas[J]. Biology and Fertility of Soils, 2013, 49(2): 143–152 [57] 李寒, 张晓黎, 郭晓红, 等. 滨海盐渍化土壤中蓝细菌多样 性及分布[J]. 微生物学通报, 2015, 42(5): 957–967 LI H, ZHANG X L, GUO X H, et al. Diversity and distribu￾tion of cyanobacteria in coastal saline soils[J]. Microbiology China, 2015, 42(5): 957–967 [58] CUDDY W S, SUMMERELL B A, GEHRINGER M M, et al. Nostoc, Microcoleus and Leptolyngbya inoculums are detri￾mental to the growth of wheat (Triticum aestivum L.) under salt stress[J]. Plant and Soil, 2013, 370(1/2): 317–332
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有