正在加载图片...
通过例子介绍概率密度曲线的意义 例:在某地区7岁正常发育的男孩中随机抽110个人, 测量他们的身高,并以身高观察值(cm)为数据,试 刻画7岁男孩身高分布。 112.6120.9115.3126.6125.3124.0107.4116.1124.3110.6114.5 128.7122.0121.5123.0114.8117.8119.4124.4111.9132.8116.8 124.1122.3114.2114.4123.9112.0125.2119.1120.9117.1129.9 117.1115.5117.6116.5111.6118.2119.3124.1122.1126.8115.6 117.2116.4123.2123.4115.7125.6127.6115.3115.8128.1125.5 107.7114.6117.1118.6120.7124.7128.7123.1118.0133.3123.8 122.1122.1112.6115.8122.8130.6128.3113.0118.8120.1117.0 114.2120.4113.4116.6119.1124.1121.6109.4119.3119.1128.2 118.5119.4119.7129.0118.4121.2117.8121.7109.8113.7119.0 114.6120.0124.6110.8128.4119.2115.1124.0118.1122.3119.9例:在某地区7岁正常发育的男孩中随机抽110个人, 测量他们的身高,并以身高观察值(cm)为数据,试 刻画7岁男孩身高分布。 112.6 120.9 115.3 126.6 125.3 124.0 107.4 116.1 124.3 110.6 114.5 128.7 122.0 121.5 123.0 114.8 117.8 119.4 124.4 111.9 132.8 116.8 124.1 122.3 114.2 114.4 123.9 112.0 125.2 119.1 120.9 117.1 129.9 117.1 115.5 117.6 116.5 111.6 118.2 119.3 124.1 122.1 126.8 115.6 117.2 116.4 123.2 123.4 115.7 125.6 127.6 115.3 115.8 128.1 125.5 107.7 114.6 117.1 118.6 120.7 124.7 128.7 123.1 118.0 133.3 123.8 122.1 122.1 112.6 115.8 122.8 130.6 128.3 113.0 118.8 120.1 117.0 114.2 120.4 113.4 116.6 119.1 124.1 121.6 109.4 119.3 119.1 128.2 118.5 119.4 119.7 129.0 118.4 121.2 117.8 121.7 109.8 113.7 119.0 114.6 120.0 124.6 110.8 128.4 119.2 115.1 124.0 118.1 122.3 119.9 通过例子介绍概率密度曲线的意义
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有