正在加载图片...
(2)求K[x]中多项式f(x)=1+x+x2+x3+x4在基1,(x),(x)2,(x)3,(x)4下的坐标 (3)证明:∑{x k+1+1)k+1 (4)由此导出数列Dn=∑k4的通项公式 x2=0+x+x(x-1)=0+(x)+(x)2 r4=(x)+7(x)2+6(x)3+(x)4 故所求过渡矩阵为 10000 00001 (2)(1,4,11,7,1) (3)易知{x+1)k+1-(x)k+1=(k+1)(x).所以 k+1 k+1 k+1 ∑(a)+1 k+ (n+1)k+1-(0)k+1) k+1(m+1)k+1 (4)因为x4=(x)+7(x)2+6(x)3+(x)4,所以 +7(x)-+ 卫=0 x=0 4+(n+1)5 n(n+1)(2n+1)(3n2+3n-1) 1.给定K3的两个基 设为F3的线性变换使 Ei= ni (1)求由基1,E2,E3到基m1,m,73的过渡矩阵 2)求在基E1,E2,E3下的矩阵;(2)  K[x]5 (9:; f(x) = 1 + x + x 2 + x 3 + x 4  1,hxi,hxi 2 ,hxi 3 ,hxi 4 ; ∗ (3) : Xn x=0 hxi k = 1 k + 1 hn + 1i k+1; ∗ (4) XYZ6[ Dn = Xn k=0 k 4 \:];. : (1) 1 = 1 x = hxi x 2 = 0 + x + x(x − 1) = 0 + hxi + hxi 2 x 3 = x + 3x(x − 1) + x(x − 1)(x − 2) = hxi + 3hxi 2 + hxi 3 x 4 = hxi + 7hxi 2 + 6hxi 3 + hxi 4 S& T =   1 0 0 0 0 0 1 1 1 1 0 0 1 3 7 0 0 0 1 6 0 0 0 0 1   . (2) (1, 4, 11, 7, 1). (3) ^U hx + 1i k+1 − hxi k+1 = (k + 1)hxi k . &' Xn x=0 hxi k = 1 k + 1 Xn x=0 [hx + 1i k+1 − hxi k+1] = 1 k + 1 " nX +1 x=1 hxi k+1 − Xn x=0 hxi k+1# = 1 k + 1 (hn + 1i k+1 − h0i k+1) = 1 k + 1 hn + 1i k+1 . (4)  x 4 = hxi + 7hxi 2 + 6hxi 3 + hxi 4 , &' Dn = Xn x=0 x 4 = Xn x=0 ¡ hxi + 7hxi 2 + 6hxi 3 + hxi 4 ¢ = 1 2 hn + 1i 2 + 7 3 hn + 1i 3 + 6 4 hn + 1i 4 + 1 5 hn + 1i 5 = 1 30 n(n + 1)(2n + 1)(3n 2 + 3n − 1). ￾  7–2 1. ,_ K3 `: ε1 = (1, 1, −1), ε2 = (1, 0, −1), ε3 = (1, 1, 1), η1 = (1, −1, 2), η2 = (2, −1, 2), η3 = (−2, 1, 1).  A  K3  ab, c: Aεi = ηi i = 1, 2, 3. (1)  ε1, ε2, ε3  η1, η2, η3 ; (2)  A  ε1, ε2, ε3 ; · 3 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有