正在加载图片...
图目录 图21带隙基准电压源基本原理图… …12 图2-2NPN型BJT… 12 图2-3正温度系数电压的产生… …14 图2-4带隙基准电压源温度系数… … 14 图2-5CMOS工艺中pnp双极性晶体管的实现… 15 图2-6带隙基准电压源电路原理图…16 图2-7数字控制PNP管数目的电路实现…17 图2-8带隙基准电压源等效噪声电路… 19 图2-9忽略PNP小信号电阻的等效噪声电路 19 图2-10判断共源共栅管作用电路 20 图2-11最终的噪声等效电路 21 图2-12最终的噪声等效电路的小信号图…21 图2-13分析共源共栅管的第三种作用… 24 图2-14计算带隙基准电压源的PSR… 24 图2-15将电源噪声引入反馈环路的实现 27 图2-16引起带隙基准基准电压源误差的因素…27 图2-17带隙基准电压源电路图…28 图2-18系统供电方案框图…30 图2-193.3V带隙基准电压源的温度曲线(前仿)… 31 图2-20电源电压2.1V时输出温度曲线(前后仿)… 32 图2-211.8V带隙基准电压源输出温度曲线(前后仿)…32 图2-22电源电压为2.1V时温度曲线与工艺角的关系(前仿)… …33 图2-231.8V带隙基准电压源温度曲线与工艺角的关系(前仿) 33 图2-24电源电压为2.1V时输出参考电压的蒙特卡罗仿真(前仿)…34 图2-251.8V带隙基准电压源输出参考电压的蒙特卡罗仿真(前仿)…34 图2-263.3V带隙基准电压源输出参考电压的线性调整率(后仿) …35 图2-27电源电压为2.1V时环路交流特性(后仿) 36 图2-281.8V带隙基准电压源环路交流特性(后仿) 36 图2-29电源电压为2.1V时环路交流特性与工艺角的关系(后仿)…37 图2-301.8V带隙基准电压源环路交流特性与工艺角的关系(后仿) …37 图2-31相位裕度随电源电压的变化(后仿) 38 图2-32电源抑制与电源电压的关系(后仿)…39 oIII 图目录 图 2-1 带隙基准电压源基本原理图·················································· 12 图 2-2 NPN 型 BJT ····································································· 12 图 2-3 正温度系数电压的产生························································ 14 图 2-4 带隙基准电压源温度系数····················································· 14 图 2-5 CMOS 工艺中 pnp 双极性晶体管的实现 ································· 15 图 2-6 带隙基准电压源电路原理图·················································· 16 图 2-7 数字控制 PNP 管数目的电路实现 ·········································· 17 图 2-8 带隙基准电压源等效噪声电路··············································· 19 图 2-9 忽略 PNP 小信号电阻的等效噪声电路 ···································· 19 图 2-10 判断共源共栅管作用电路 ··················································· 20 图 2-11 最终的噪声等效电路 ························································· 21 图 2-12 最终的噪声等效电路的小信号图 ·········································· 21 图 2-13 分析共源共栅管的第三种作用 ············································· 24 图 2-14 计算带隙基准电压源的 PSR ··············································· 24 图 2-15 将电源噪声引入反馈环路的实现 ·········································· 27 图 2-16 引起带隙基准基准电压源误差的因素 ···································· 27 图 2-17 带隙基准电压源电路图 ······················································ 28 图 2-18 系统供电方案框图 ···························································· 30 图 2-19 3.3 V 带隙基准电压源的温度曲线(前仿) ································ 31 图 2-20 电源电压 2.1 V 时输出温度曲线(前后仿) ······························· 32 图 2-21 1.8 V 带隙基准电压源输出温度曲线(前后仿) ·························· 32 图 2-22 电源电压为 2.1 V 时温度曲线与工艺角的关系(前仿) ················· 33 图 2-23 1.8 V 带隙基准电压源温度曲线与工艺角的关系(前仿) ·············· 33 图 2-24 电源电压为 2.1 V 时输出参考电压的蒙特卡罗仿真(前仿) ··········· 34 图 2-25 1.8 V 带隙基准电压源输出参考电压的蒙特卡罗仿真(前仿) ········ 34 图 2-26 3.3 V 带隙基准电压源输出参考电压的线性调整率(后仿) ··········· 35 图 2-27 电源电压为 2.1 V 时环路交流特性(后仿) ······························· 36 图 2-28 1.8 V 带隙基准电压源环路交流特性(后仿) ····························· 36 图 2-29 电源电压为 2.1 V 时环路交流特性与工艺角的关系(后仿) ··········· 37 图 2-30 1.8 V 带隙基准电压源环路交流特性与工艺角的关系(后仿) ········ 37 图 2-31 相位裕度随电源电压的变化(后仿) ········································ 38 图 2-32 电源抑制与电源电压的关系(后仿) ········································ 39
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有