学校代码:10246 学号:10210720183 復大舞 硕士学位论文 (专业学位) 基准源和温度检测模块设计 院 系 信息科学与工程学院 专 业: 集成电路工程 姓 名: 张伟 指导教师: 唐长文副教授 完成日期: 2012年04月30日
学校代码: 10246 学 号: 10210720183 硕 士 学 位 论 文 (专业学位) 基准源和温度检测模块设计 院 系: 信息科学与工程学院 专 业: 集成电路工程 姓 名: 张 伟 指 导 教 师: 唐长文 副教授 完 成 日 期: 2012 年 04 月 30 日
目录 图目录… …l川 表目录… …V 摘要… …1 Abstract… …3 第一章概述… …5 1.1研究动机… …5 1.2研究内容及贡献 …6 1.3论文组织结构 6 第二章带隙基准电压源电路设计…7 2.1前言… …7 2.11带隙基准源的发展历史…7 2.1.2国内外研究现状 。。。。。。。。。 8 2.1.3主要性能指标… …9 2.1.4带隙基准源的基本原理及结构 11 2.2电路结构及性能分析…15 2.2.1电路结构… 15 2.2.2温度系数分析… 17 2.2.3输出噪声分析… 8 2.2.4电源抑制分析. 23 2.2.5误差分析 27 2.3电路实现… 28 2.4电路在系统中的考虑… 29 2.5仿真结果… 30 2.5.1直流特性 30 2.5.2环路特性 35 2.5.3电源抑制… 38 2.5.4输出噪声 41 2.5.5启动时间… 43 2.6本章小结… 44 第三章电压一电流转换电路设计 45 3.1前言… 45 3.2电路结构及性能分析… 46
I 目 录 图目录 ························································································ III 表目录 ························································································ V 摘 要 ························································································· 1 Abstract ······················································································ 3 第一章 概述 ················································································ 5 1.1 研究动机 ·········································································· 5 1.2 研究内容及贡献 ································································· 6 1.3 论文组织结构 ···································································· 6 第二章 带隙基准电压源电路设计 ····················································· 7 2.1 前言 ················································································ 7 2.1.1 带隙基准源的发展历史 ··············································· 7 2.1.2 国内外研究现状 ························································ 8 2.1.3 主要性能指标 ··························································· 9 2.1.4 带隙基准源的基本原理及结构 ···································· 11 2.2 电路结构及性能分析 ························································· 15 2.2.1 电路结构 ······························································· 15 2.2.2 温度系数分析 ························································· 17 2.2.3 输出噪声分析 ························································· 18 2.2.4 电源抑制分析 ························································· 23 2.2.5 误差分析 ······························································· 27 2.3 电路实现 ········································································ 28 2.4 电路在系统中的考虑 ························································· 29 2.5 仿真结果 ········································································ 30 2.5.1 直流特性 ······························································· 30 2.5.2 环路特性 ······························································· 35 2.5.3 电源抑制 ······························································· 38 2.5.4 输出噪声 ······························································· 41 2.5.5 启动时间 ······························································· 43 2.6 本章小结 ········································································ 44 第三章 电压—电流转换电路设计 ··················································· 45 3.1 前言 ·············································································· 45 3.2 电路结构及性能分析 ························································· 46
3.2.1电路结构 46 3.2.2电源抑制分析… 49 3.3电路实现 … 51 3.4仿真结果… 51 第四章温度检测电路设计… 53 4.1前言 …53 4.2电路分析及实现… …54 4.2.1电路分析 …54 4.2.2电路实现… 55 4.3仿真结果 56 第五章总结与展望… 61 5.1总结… 61 5.2展望… 61 致谢… 63 参考文献… 65
II 3.2.1 电路结构 ······························································· 46 3.2.2 电源抑制分析 ························································· 49 3.3 电路实现 ········································································ 51 3.4 仿真结果 ········································································ 51 第四章 温度检测电路设计 ···························································· 53 4.1 前言 ·············································································· 53 4.2 电路分析及实现 ······························································· 54 4.2.1 电路分析 ······························································· 54 4.2.2 电路实现 ······························································· 55 4.3 仿真结果 ········································································ 56 第五章 总结与展望 ····································································· 61 5.1 总结 ·············································································· 61 5.2 展望 ·············································································· 61 致谢 ··························································································· 63 参考文献 ····················································································· 65
图目录 图21带隙基准电压源基本原理图… …12 图2-2NPN型BJT… 12 图2-3正温度系数电压的产生… …14 图2-4带隙基准电压源温度系数… … 14 图2-5CMOS工艺中pnp双极性晶体管的实现… 15 图2-6带隙基准电压源电路原理图…16 图2-7数字控制PNP管数目的电路实现…17 图2-8带隙基准电压源等效噪声电路… 19 图2-9忽略PNP小信号电阻的等效噪声电路 19 图2-10判断共源共栅管作用电路 20 图2-11最终的噪声等效电路 21 图2-12最终的噪声等效电路的小信号图…21 图2-13分析共源共栅管的第三种作用… 24 图2-14计算带隙基准电压源的PSR… 24 图2-15将电源噪声引入反馈环路的实现 27 图2-16引起带隙基准基准电压源误差的因素…27 图2-17带隙基准电压源电路图…28 图2-18系统供电方案框图…30 图2-193.3V带隙基准电压源的温度曲线(前仿)… 31 图2-20电源电压2.1V时输出温度曲线(前后仿)… 32 图2-211.8V带隙基准电压源输出温度曲线(前后仿)…32 图2-22电源电压为2.1V时温度曲线与工艺角的关系(前仿)… …33 图2-231.8V带隙基准电压源温度曲线与工艺角的关系(前仿) 33 图2-24电源电压为2.1V时输出参考电压的蒙特卡罗仿真(前仿)…34 图2-251.8V带隙基准电压源输出参考电压的蒙特卡罗仿真(前仿)…34 图2-263.3V带隙基准电压源输出参考电压的线性调整率(后仿) …35 图2-27电源电压为2.1V时环路交流特性(后仿) 36 图2-281.8V带隙基准电压源环路交流特性(后仿) 36 图2-29电源电压为2.1V时环路交流特性与工艺角的关系(后仿)…37 图2-301.8V带隙基准电压源环路交流特性与工艺角的关系(后仿) …37 图2-31相位裕度随电源电压的变化(后仿) 38 图2-32电源抑制与电源电压的关系(后仿)…39 o
III 图目录 图 2-1 带隙基准电压源基本原理图·················································· 12 图 2-2 NPN 型 BJT ····································································· 12 图 2-3 正温度系数电压的产生························································ 14 图 2-4 带隙基准电压源温度系数····················································· 14 图 2-5 CMOS 工艺中 pnp 双极性晶体管的实现 ································· 15 图 2-6 带隙基准电压源电路原理图·················································· 16 图 2-7 数字控制 PNP 管数目的电路实现 ·········································· 17 图 2-8 带隙基准电压源等效噪声电路··············································· 19 图 2-9 忽略 PNP 小信号电阻的等效噪声电路 ···································· 19 图 2-10 判断共源共栅管作用电路 ··················································· 20 图 2-11 最终的噪声等效电路 ························································· 21 图 2-12 最终的噪声等效电路的小信号图 ·········································· 21 图 2-13 分析共源共栅管的第三种作用 ············································· 24 图 2-14 计算带隙基准电压源的 PSR ··············································· 24 图 2-15 将电源噪声引入反馈环路的实现 ·········································· 27 图 2-16 引起带隙基准基准电压源误差的因素 ···································· 27 图 2-17 带隙基准电压源电路图 ······················································ 28 图 2-18 系统供电方案框图 ···························································· 30 图 2-19 3.3 V 带隙基准电压源的温度曲线(前仿) ································ 31 图 2-20 电源电压 2.1 V 时输出温度曲线(前后仿) ······························· 32 图 2-21 1.8 V 带隙基准电压源输出温度曲线(前后仿) ·························· 32 图 2-22 电源电压为 2.1 V 时温度曲线与工艺角的关系(前仿) ················· 33 图 2-23 1.8 V 带隙基准电压源温度曲线与工艺角的关系(前仿) ·············· 33 图 2-24 电源电压为 2.1 V 时输出参考电压的蒙特卡罗仿真(前仿) ··········· 34 图 2-25 1.8 V 带隙基准电压源输出参考电压的蒙特卡罗仿真(前仿) ········ 34 图 2-26 3.3 V 带隙基准电压源输出参考电压的线性调整率(后仿) ··········· 35 图 2-27 电源电压为 2.1 V 时环路交流特性(后仿) ······························· 36 图 2-28 1.8 V 带隙基准电压源环路交流特性(后仿) ····························· 36 图 2-29 电源电压为 2.1 V 时环路交流特性与工艺角的关系(后仿) ··········· 37 图 2-30 1.8 V 带隙基准电压源环路交流特性与工艺角的关系(后仿) ········ 37 图 2-31 相位裕度随电源电压的变化(后仿) ········································ 38 图 2-32 电源抑制与电源电压的关系(后仿) ········································ 39
图2-331.8V带隙基准电压源电源抑制特性(后仿)… 39 图2-34电源电压2.1V时电源抑制与工艺角的关系(后仿)…40 图2-351.8V带隙基准电压源电源抑制与工艺角的关系(后仿) …40 图2-36电源电压为2.1V时输出噪声与工艺角关系(后仿)… …41 图2-371.8V带隙基准参考源输出噪声与工艺角关系(后仿)…42 图2-38输出噪声与电源电压的关系(后仿)… 42 图2-391.8V带隙基准电压源的输出噪声(后仿)… 43 图2-401.8V带隙基准电压源启动时间与工艺角的关系(后仿)…43 图2-41电源电压为2.1V时启动时间与工艺角的关系(后仿)… ………44 图3-1长距离电压偏置 45 图3-2电压一电流转换电路原理图… 45 图33电压一电流转换电路结构图 46 图3-4数字控制电阻阵列… 47 图3-5 Tuning电路原理图… 48 图3-6低压共源共栅电流镜… 48 图3-7计算电源抑制的V2!电路图 49 图3-8V2电路主体部分电路图… 50 图3-9计算运放电源抑制的电路图…50 图3-10V21电路图… 51 图3-11的电源抑制与工艺角的关系…52 图3-12数字控制信号Rctrl与输出参考电流的关系 52 图4-1集成温度传感器原理图…54 图4-2温度检测电路结构图 54 图4-3运放A1的电路图…56 图4-4运放A2的电路图… ……… 56 图4-5温度检测电路的输出电压的温度特性…57 图4-6输出电压与温度的斜率特性…58 图4-7不同工艺角下输出电压的温度特性…58 图4-8不同工艺角下输出电压与温度的斜率特性……59
图 2-33 1.8 V 带隙基准电压源电源抑制特性(后仿) ····························· 39 图 2-34 电源电压 2.1 V 时电源抑制与工艺角的关系(后仿) ···················· 40 图 2-35 1.8 V 带隙基准电压源电源抑制与工艺角的关系(后仿) ·············· 40 图 2-36 电源电压为 2.1 V 时输出噪声与工艺角关系(后仿) ····················· 41 图 2-37 1.8 V 带隙基准参考源输出噪声与工艺角关系(后仿) ················· 42 图 2-38 输出噪声与电源电压的关系(后仿) ········································ 42 图 2-39 1.8 V 带隙基准电压源的输出噪声(后仿) ································ 43 图 2-40 1.8 V 带隙基准电压源启动时间与工艺角的关系(后仿) ·············· 43 图 2-41 电源电压为 2.1 V 时启动时间与工艺角的关系(后仿) ················· 44 图 3-1 长距离电压偏置 ································································ 45 图 3-2 电压—电流转换电路原理图·················································· 45 图 3-3 电压—电流转换电路结构图·················································· 46 图 3-4 数字控制电阻阵列 ····························································· 47 图 3-5 Tuning 电路原理图 ····························································· 48 图 3-6 低压共源共栅电流镜··························································· 48 图 3-7 计算电源抑制的 V2I 电路图·················································· 49 图 3-8 V2I 电路主体部分电路图 ····················································· 50 图 3-9 计算运放电源抑制的电路图·················································· 50 图 3-10 V2I 电路图······································································ 51 图 3-11 Vr的电源抑制与工艺角的关系 ············································· 52 图 3-12 数字控制信号 Rctrl 与输出参考电流的关系 ···························· 52 图 4-1 集成温度传感器原理图························································ 54 图 4-2 温度检测电路结构图··························································· 54 图 4-3 运放 A1的电路图 ······························································· 56 图 4-4 运放 A2的电路图 ······························································· 56 图 4-5 温度检测电路的输出电压的温度特性 ······································ 57 图 4-6 输出电压与温度的斜率特性·················································· 58 图 4-7 不同工艺角下输出电压的温度特性 ········································· 58 图 4-8 不同工艺角下输出电压与温度的斜率特性 ································ 59
表目录 表2-13.3V带隙基准电压源的直流特性…31 表2-21.8V带隙基准电压源的直流特性… 31 表2-33.3V带隙基准电压源的环路特性… …35 表2-418V带隙基准电压源的环路特性… …35 表2-53.3V带隙基准电压源电源抑制特性…38 表2-61.8V带隙基准电压源电源抑制特性…38 表2-73.3V带隙基准电压源输出噪声特性……41 表2-81.8带隙基准电压源输出噪声特性…41 表2-9带隙基准电压源性能参数总结… 44 表3-1电压电流转换电路性能参数与工艺角的关系…52 表4-1不同工艺角下温度检测电路的性能参数…57
V 表目录 表 2-1 3.3V 带隙基准电压源的直流特性 ··········································· 31 表 2-2 1.8V 带隙基准电压源的直流特性 ··········································· 31 表 2-3 3.3V 带隙基准电压源的环路特性 ··········································· 35 表 2-4 1.8V 带隙基准电压源的环路特性 ··········································· 35 表 2-5 3.3V 带隙基准电压源电源抑制特性 ········································ 38 表 2-6 1.8V 带隙基准电压源电源抑制特性 ········································ 38 表 2-7 3.3V 带隙基准电压源输出噪声特性 ········································ 41 表 2-8 1.8V 带隙基准电压源输出噪声特性 ········································ 41 表 2-9 带隙基准电压源性能参数总结··············································· 44 表 3-1 电压电流转换电路性能参数与工艺角的关系 ····························· 52 表 4-1 不同工艺角下温度检测电路的性能参数 ··································· 57
摘要 射频接收机是包含射频、模拟和数字三种类型电路的片上系统。不同类型的 电路对基准源性能要求各不相同,射频电路要求基准源提供低噪声的基准电压和 电流。随着片上系统的规模不断增大,电源电压的波动对系统性能影响逐渐增大。 针对这些问题,本文对基准源和温度检测电路进行了探索和研究,并且完成了一 款数字电视调谐芯片基准源和温度检测电路的设计。 首先,设计了带隙基准电压源。针对射频接收机的要求,对带隙基准电路的 温度系数、输出噪声和电源抑制及相互之间的关系进行了详细的分析。在此基础 上,给出了具有高电源抑制和低输出噪声的电路设计方案。该电路设计的温度系 数小于15.48ppm/℃,Vbo为2.1~3.3V时直流电源抑制小于-79.8dB,Vb加为1.8 V时直流的电源抑制为-60dB,从100Hz到100kHz频率范围的积分噪声小于 16.93μVms 其次,设计了电压一电流转换电路。电路采用6位数字信号控制片内电阻阵 列,输出电流精度为7.8%。通过增加共栅管,得到较高的电源抑制,其直流电 源抑制为-95.3dB。 最后,设计了温度检测电路。电路的温度检测范围为-45℃~125℃,输出 电压对温度的斜率为5.2mV/℃。 关键词:带隙基准电压源,电压电流转换电路,温度检测电路,电源抑制,噪声, 软修正,片内可调电阻 中图分类号:TN4 1
1 摘 要 射频接收机是包含射频、模拟和数字三种类型电路的片上系统。不同类型的 电路对基准源性能要求各不相同,射频电路要求基准源提供低噪声的基准电压和 电流。随着片上系统的规模不断增大,电源电压的波动对系统性能影响逐渐增大。 针对这些问题,本文对基准源和温度检测电路进行了探索和研究,并且完成了一 款数字电视调谐芯片基准源和温度检测电路的设计。 首先,设计了带隙基准电压源。针对射频接收机的要求,对带隙基准电路的 温度系数、输出噪声和电源抑制及相互之间的关系进行了详细的分析。在此基础 上,给出了具有高电源抑制和低输出噪声的电路设计方案。该电路设计的温度系 数小于15.48 ppm/℃,VDD为2.1~3.3 V时直流电源抑制小于–79.8 dB,VDD为1.8 V时直流的电源抑制为–60 dB,从100 Hz到100 kHz频率范围的积分噪声小于 16.93 μVrms。 其次,设计了电压—电流转换电路。电路采用6位数字信号控制片内电阻阵 列,输出电流精度为7.8‰。通过增加共栅管,得到较高的电源抑制,其直流电 源抑制为–95.3 dB。 最后,设计了温度检测电路。电路的温度检测范围为–45 ℃~125 ℃,输出 电压对温度的斜率为5.2 mV/℃。 关键词:带隙基准电压源,电压电流转换电路,温度检测电路,电源抑制,噪声, 软修正,片内可调电阻 中图分类号:TN4
Abstract In this work,the reference source and temperature detection circuit are designed for DTV Tuner.The RF receiver is SoC(System on Chip),which includes three types of circuit system:RF,analog and digital circuits.The requirement of different type circuits to the reference varies,power fluctuations impact larger on the system.As result of the introduction of the RF circuit,need to lower output noise.Reference and temperature detection circuit design and exploration for these new problems. First,the article describes the design of bandgap voltage reference.To receiver characteristics,a detailed analysis of temperature coefficient,output noise and power supply rejection of bandgap,sort out a solution to meet the design requirements,with a high power supply rejection and low output noise characteristics,the temperature coefficient is less than 15.48 ppm/C,the VDD of 2.1~3.3 V DC power supply rejection smaller than-79.8 dB,the Vop of 1.8 V DC power supply rejection is-60 dB .Less than 16.93 uVims integral noise from 100 Hz to 100 kHz range. Then,the design of the voltage to current converter.The circuit uses 6 bits digital signal control on-chip resistor array,the output current accuracy of 7.8%0. Add the common-source common-gate transistors,get a high power supply rejection,in a simple circuit structure and its DC power supply rejection is -95.3dB. Finally,the design of temperature sensing circuitry.The temperature sensing range is-45℃~125℃,the temperature slope of the output voltage5.2 mV/C. Keywords:Bandgap Voltage Reference,Voltage to Current,Temperature Sensor,Power Supply Rejection,Noise,Soft-trimming,On-chip Tuning Resistor Classification Code:TN4 3
3 Abstract In this work, the reference source and temperature detection circuit are designed for DTV Tuner. The RF receiver is SoC(System on Chip),which includes three types of circuit system: RF, analog and digital circuits. The requirement of different type circuits to the reference varies, power fluctuations impact larger on the system. As result of the introduction of the RF circuit, need to lower output noise. Reference and temperature detection circuit design and exploration for these new problems. First, the article describes the design of bandgap voltage reference. To receiver characteristics, a detailed analysis of temperature coefficient, output noise and power supply rejection of bandgap, sort out a solution to meet the design requirements, with a high power supply rejection and low output noise characteristics, the temperature coefficient is less than 15.48 ppm/℃, the VDD of 2.1~3.3 V DC power supply rejection smaller than ﹣79.8 dB, the VDD of 1.8 V DC power supply rejection is﹣ 60 dB .Less than 16.93 μVrms integral noise from 100 Hz to 100 kHz range. Then, the design of the voltage to current converter. The circuit uses 6 bits digital signal control on-chip resistor array, the output current accuracy of 7.8‰. Add the common-source common-gate transistors, get a high power supply rejection, in a simple circuit structure and its DC power supply rejection is –95.3 dB. Finally, the design of temperature sensing circuitry. The temperature sensing range is –45 ℃~125 ℃, the temperature slope of the output voltage 5.2 mV/℃. Keywords: Bandgap Voltage Reference,Voltage to Current,Temperature Sensor,Power Supply Rejection,Noise,Soft-trimming,On-chip Tuning Resistor Classification Code: TN4
第一章概述 第一章概述 1.1研究动机 近年来无线通信技术的发展呈爆炸式增长,以iOS和Android等为代表的智能 手机的蓬勃发展,2G、3G、4G、Bluetooth、WLAN、GPS、WiMax和Digital TV 等通信技术普遍而深入的应用在人们的日常生活和工作中。 同时,工艺可以量产的晶体管特征尺寸已达到22n,晶圆的最大尺寸也在 不断增加,单片上已经能集成完整功能的大规模的系统。片上系统(System on Chip,SoC)技术也应运而生,其原理就是将一个完整的系统集成于一块芯片上。 这种技术一方面能提高芯片的性能,另一方面能有效的减少了芯片流片、封装和 测试的费用,使产品更具竞争力。因此,片上系统技术已成为集成电路发展的重 要方向之一。 通信技术的蓬勃发展促使射频接收机芯片的需求也呈现爆炸性增加,同时射 频接收机作为片上系统技术应用的一个典型范例,拥有了片上系统技术的优势。 因此,对射频接收机的研究具有光明的前景。 目前,数字电视正逐步取代模拟电视成为主流电视接收方式。本文的应用背 景是射频接收机中的数字电视调谐芯片,研究了在射频接收机应用中基准源和温 度检测模块的指标要求,设计了数字电路调谐芯片中的基准源和温度检测模块。 基准源是模拟电路的基本模块之一,包括基准电压源和基准电流源。基准电 压源和基准电流源分别为整个系统提供基准电压和基准电流,其性能的好坏影响 整个系统的性能。与传统电路不同,射频接收机是包含射频、模拟和数字电路的 片上系统。由于不同类型电路对基准性能要求各不相同,这对基准源的设计提出 了更高要求。数字电路对基准源要求最低,射频电路要求很高,主要是输出噪声 方面。由于数字电路的电源电压波动可能通过耦合方式影响基准电压和电流的稳 定性,这就需要基准源具有高的电源抑制能力。传统的带隙基准电压源,一般要 求对工作温度、电源电压和工艺变化不敏感。因为,本文设计还需要考虑噪声对 射频模块的影响,所以对电源电压的稳定性提出了更高的要求。因此,只有设计 出更高性能的基准源才能满足上述要求。本设计的基准电压源通过带隙基准电压 源来实现,基准电流源则采用基准电压源得到的输出参考电压转换得到。为了得 到高的集成度,基准电流源不使用传统的片外电阻提高电流精度的方法,而是使 用片内可调电阻阵列的方法。由于片内电阻存在20%~30%工艺误差的原因,通 过校正电路来得到数字校正控制信号来保证稳定的精确电流。 温度检测模块在片上系统中扮演重要的角色。随着芯片集成度提高,器件密 度和能耗密度增大,热量散发到周围环境的速度变慢,芯片温度升高显著。有研 究表明,芯片温度平均每升高1℃,MOS管的驱动能力将下降约4%,连线延迟 5
第一章 概述 5 第一章 概述 1.1 研究动机 近年来无线通信技术的发展呈爆炸式增长,以iOS和Android等为代表的智能 手机的蓬勃发展,2G、3G、4G、Bluetooth、WLAN、GPS、WiMax和Digital TV 等通信技术普遍而深入的应用在人们的日常生活和工作中。 同时,工艺可以量产的晶体管特征尺寸已达到22 nm,晶圆的最大尺寸也在 不断增加,单片上已经能集成完整功能的大规模的系统。片上系统(System on Chip,SoC)技术也应运而生,其原理就是将一个完整的系统集成于一块芯片上。 这种技术一方面能提高芯片的性能,另一方面能有效的减少了芯片流片、封装和 测试的费用,使产品更具竞争力。因此,片上系统技术已成为集成电路发展的重 要方向之一。 通信技术的蓬勃发展促使射频接收机芯片的需求也呈现爆炸性增加,同时射 频接收机作为片上系统技术应用的一个典型范例,拥有了片上系统技术的优势。 因此,对射频接收机的研究具有光明的前景。 目前,数字电视正逐步取代模拟电视成为主流电视接收方式。本文的应用背 景是射频接收机中的数字电视调谐芯片,研究了在射频接收机应用中基准源和温 度检测模块的指标要求,设计了数字电路调谐芯片中的基准源和温度检测模块。 基准源是模拟电路的基本模块之一,包括基准电压源和基准电流源。基准电 压源和基准电流源分别为整个系统提供基准电压和基准电流,其性能的好坏影响 整个系统的性能。与传统电路不同,射频接收机是包含射频、模拟和数字电路的 片上系统。由于不同类型电路对基准性能要求各不相同,这对基准源的设计提出 了更高要求。数字电路对基准源要求最低,射频电路要求很高,主要是输出噪声 方面。由于数字电路的电源电压波动可能通过耦合方式影响基准电压和电流的稳 定性,这就需要基准源具有高的电源抑制能力。传统的带隙基准电压源,一般要 求对工作温度、电源电压和工艺变化不敏感。因为,本文设计还需要考虑噪声对 射频模块的影响,所以对电源电压的稳定性提出了更高的要求。因此,只有设计 出更高性能的基准源才能满足上述要求。本设计的基准电压源通过带隙基准电压 源来实现,基准电流源则采用基准电压源得到的输出参考电压转换得到。为了得 到高的集成度,基准电流源不使用传统的片外电阻提高电流精度的方法,而是使 用片内可调电阻阵列的方法。由于片内电阻存在20%~30%工艺误差的原因,通 过校正电路来得到数字校正控制信号来保证稳定的精确电流。 温度检测模块在片上系统中扮演重要的角色。随着芯片集成度提高,器件密 度和能耗密度增大,热量散发到周围环境的速度变慢,芯片温度升高显著。有研 究表明,芯片温度平均每升高1 ℃,MOS管的驱动能力将下降约4%,连线延迟
射频接收机中基准源和温度检测电路设计 增加5%,集成电路失效率增加一倍[1]。因此,在芯片种集成温度检测模块,实 时检测芯片内部温度,采用算法调节芯片模块的工作状态,对提高芯片性能具有 重要意义。 另外,当工艺特征尺寸进入深亚微米以后,器件失配已成为限制芯片性能的 重要因素。因此,在电路设计中也应该考虑器件失配。 1.2研究内容及贡献 本论文围绕基准源电路和温度检测电路在数字电视调谐芯片的应用展开研 究和设计。根据使用片上系统技术的数字电视调谐芯片对基准源电路和温度检测 电路提出的低输出噪声和高电源抑制的要求,设计出符合要求的带隙基准电压源 电路、电压一电流转换电路和温度检测电路。论文主要贡献有: 1.分析得到传统的带隙基准电压源的温度系数和输出噪声的关系。采用将 电源噪声引入反馈环路的方法提高电源抑制。给出全局供电方案,且该 方案提高了输出电压的电源抑制性能。 2.电压一电流转换电路在传统结构中增加了共源共栅管,优化了电路的电 源抑制。采用校正电路产生的6比特数字信号控制电阻阵列消除工艺带 来的阻值误差。 3.对温度传感器的电路设计进行了探索。使用带隙基准电压源产生的与温 度成正比的电流,设计了一款温度检测电路。 1.3论文组织结构 论文针对基准源和温度检测模块在数字电视调谐芯片中的应用,首先确定各 模块在射频接收机中的要求,再对电路原理和结构进行分析,最后根据分析结果, 设计满足性能指标的电路。论文各部分内容如下: 第二章为带隙基准电压源电路设计。首先介绍了带隙基准电压源的发展历史、 国内外研究现状、性能指标、基本结构及原理。紧接着对电路结构和温度系数、 输出噪声和电源抑制等参数性能进行分析。最后,给出电路设计和仿真结果和本 章小结。 第三章为电压一电流转换电路设计。首先介绍电路结构,主要集中于片内电 阻的实现方法:其次重点分析这种电路结构的电源抑制特性,接着给出了电路的 实现方案;最后给出仿真结果和电路的性能总结。 第四章为温度检测电路设计。分析了电路结构及性能,然后给出电路的具体 实现和仿真结果,最后对该电路的设计进行了总结。 第五章为总结和展望。对论文的工作进行了总结,并对今后的工作做了展望。 6
射频接收机中基准源和温度检测电路设计 6 增加5%,集成电路失效率增加一倍[1]。因此,在芯片种集成温度检测模块,实 时检测芯片内部温度,采用算法调节芯片模块的工作状态,对提高芯片性能具有 重要意义。 另外,当工艺特征尺寸进入深亚微米以后,器件失配已成为限制芯片性能的 重要因素。因此,在电路设计中也应该考虑器件失配。 1.2 研究内容及贡献 本论文围绕基准源电路和温度检测电路在数字电视调谐芯片的应用展开研 究和设计。根据使用片上系统技术的数字电视调谐芯片对基准源电路和温度检测 电路提出的低输出噪声和高电源抑制的要求,设计出符合要求的带隙基准电压源 电路、电压—电流转换电路和温度检测电路。论文主要贡献有: 1. 分析得到传统的带隙基准电压源的温度系数和输出噪声的关系。采用将 电源噪声引入反馈环路的方法提高电源抑制。给出全局供电方案,且该 方案提高了输出电压的电源抑制性能。 2. 电压—电流转换电路在传统结构中增加了共源共栅管,优化了电路的电 源抑制。采用校正电路产生的 6 比特数字信号控制电阻阵列消除工艺带 来的阻值误差。 3. 对温度传感器的电路设计进行了探索。使用带隙基准电压源产生的与温 度成正比的电流,设计了一款温度检测电路。 1.3 论文组织结构 论文针对基准源和温度检测模块在数字电视调谐芯片中的应用,首先确定各 模块在射频接收机中的要求,再对电路原理和结构进行分析,最后根据分析结果, 设计满足性能指标的电路。论文各部分内容如下: 第二章为带隙基准电压源电路设计。首先介绍了带隙基准电压源的发展历史、 国内外研究现状、性能指标、基本结构及原理。紧接着对电路结构和温度系数、 输出噪声和电源抑制等参数性能进行分析。最后,给出电路设计和仿真结果和本 章小结。 第三章为电压—电流转换电路设计。首先介绍电路结构,主要集中于片内电 阻的实现方法;其次重点分析这种电路结构的电源抑制特性,接着给出了电路的 实现方案;最后给出仿真结果和电路的性能总结。 第四章为温度检测电路设计。分析了电路结构及性能,然后给出电路的具体 实现和仿真结果,最后对该电路的设计进行了总结。 第五章为总结和展望。对论文的工作进行了总结,并对今后的工作做了展望