学校代码:10246 学号:11210720114 復旦大架 硕士学位论文 射频接收机中的自动增益控制 院 系: 信息科学与工程学院 专 业: 集成电路工程 姓 名: 黄求振 指导教师: 唐长文 完成日期: 2013年4月15日
学校代码:10246 学 号:11210720114 硕 士 学 位 论 文 射频接收机中的自动增益控制 院 系: 信息科学与工程学院 专 业: 集成电路工程 姓 名: 黄求振 指 导 教 师: 唐长文 完 成 日 期: 2013 年 4 月 15 日
目录 图目录… … 表目录… …V 摘要… VI Abstract…. VII 第一章概述… …1 1.1研究背景 …1 1.2研究动机… 2 1.3论文结构… 3 第二章射频设计中的主要参量与接收机架构… X 2.1非线性 × 2.1.1三阶交调点 6 2.1.2P3的级联公式… …7 2.1.3宽带信号的三阶交调… 8 2.1.4复合三阶失真 9 2.2噪声… …12 2.2.1信噪比… 12 2.2.2噪声系数… 13 23信号噪声失真比… 14 2.3.1概述… 14 2.3.2信号噪声失真比的级联公式…15 2.3.3影响信号噪声失真比的几个因素…16 2.3.3.1噪声系数对信号噪声失真比的影响…17 2.3.3.2非线性对信号噪声失真比的影响…17 2.3.3.3增益对信号噪声失真比的影响………18 2.4接收机的主要架构…22 2.4.1外差架构… 22 2.4.2零中频架构 24 2.4.3其他架构… 25 第三章系统自动增益控制…26 3.1概述…… 26 3.1.1反馈环路与前馈环路…26
I 目录 图目录 ··························································································· III 表目录 ··························································································· V 摘要 ····························································································· VI Abstract ······················································································ VII 第一章 概述 ···················································································· 1 1.1 研究背景············································································· 1 1.2 研究动机············································································· 2 1.3 论文结构············································································· 3 第二章 射频设计中的主要参量与接收机架构 ·········································· 4 2.1 非线性················································································ 4 2.1.1 三阶交调点 ································································· 5 2.1.2 IP3的级联公式 ····························································· 7 2.1.3 宽带信号的三阶交调 ····················································· 8 2.1.4 复合三阶失真 ······························································ 9 2.2 噪声·················································································· 12 2.2.1 信噪比 ······································································ 12 2.2.2 噪声系数 ··································································· 13 2.3 信号噪声失真比 ··································································· 14 2.3.1 概述 ········································································· 14 2.3.2 信号噪声失真比的级联公式 ··········································· 15 2.3.3 影响信号噪声失真比的几个因素 ····································· 16 2.3.3.1 噪声系数对信号噪声失真比的影响 ···················· 17 2.3.3.2 非线性对信号噪声失真比的影响 ······················· 17 2.3.3.3 增益对信号噪声失真比的影响 ·························· 18 2.4 接收机的主要架构 ································································ 22 2.4.1 外差架构 ··································································· 22 2.4.2 零中频架构 ································································ 24 2.4.3 其他架构 ··································································· 25 第三章 系统自动增益控制 ································································· 26 3.1 概述·················································································· 26 3.1.1 反馈环路与前馈环路 ···················································· 26
3.1.2数字自动增益控制… …28 3.2数字电视调谐器(TV-tuner)系统架构及系统控制方法…29 3.2.1数字电视调谐器(TV-tuner)的系统架构 30 3.2.2各模块增益控制流程… …30 3.2.3各个模块的目标功率设计 33 3.3自动增益控制算法… 33 3.3.1系统控制状态机 …34 3.3.2增益核心算法状态机…35 3.3.3输出功率的数字编码方法… 38 3.3.3.1功率检测器(PWD)的输出编码 …… 39 3.3.3.2幅度检测器(RSS)的输出编码…40 3.4其他模块…… 41 3.4.1RC偏差校正模块 41 3.4.2功率检测器的直流失调校正 42 3.4.3脉宽调制译码… 43 3.4.4噪声与带外非线性的优化模块… 45 第四章电路仿真及测试…。 49 4.1各模块仿真结果… 49 4.1.1系统仿真… 49 4.1.2电阻电容校正模块仿真… 51 4.1.3功率检测器直流校正模块仿真… 51 4.1.4脉宽调制译码模块仿真… 51 4.2数字电视调谐器的测试结果… 52 4.2.1系统自动增益控制测试… 52 4.2.2脉宽调制译码测试 53 第五章总结与展望… 54 5.1总结… 54 5.2展望… 54 参考文献… …55 致谢… …57
II 3.1.2 数字自动增益控制 ······················································· 28 3.2 数字电视调谐器(TV-tuner)系统架构及系统控制方法 ···················· 29 3.2.1 数字电视调谐器(TV-tuner)的系统架构 ······························ 30 3.2.2 各模块增益控制流程 ···················································· 30 3.2.3 各个模块的目标功率设计 ·············································· 33 3.3 自动增益控制算法 ································································ 33 3.3.1 系统控制状态机 ·························································· 34 3.3.2 增益核心算法状态机 ···················································· 35 3.3.3 输出功率的数字编码方法 ·············································· 38 3.3.3.1 功率检测器(PWD)的输出编码 ·························· 39 3.3.3.2 幅度检测器(RSSI)的输出编码 ·························· 40 3.4 其他模块············································································ 41 3.4.1 RC 偏差校正模块 ························································· 41 3.4.2 功率检测器的直流失调校正 ··········································· 42 3.4.3 脉宽调制译码 ····························································· 43 3.4.4 噪声与带外非线性的优化模块 ········································ 45 第四章 电路仿真及测试 ···································································· 49 4.1 各模块仿真结果 ··································································· 49 4.1.1 系统仿真 ··································································· 49 4.1.2 电阻电容校正模块仿真 ················································· 51 4.1.3 功率检测器直流校正模块仿真 ········································ 51 4.1.4 脉宽调制译码模块仿真 ················································· 51 4.2 数字电视调谐器的测试结果 ···················································· 52 4.2.1 系统自动增益控制测试 ················································· 52 4.2.2 脉宽调制译码测试 ······················································· 53 第五章 总结与展望 ·········································································· 54 5.1 总结·················································································· 54 5.2 展望·················································································· 54 参考文献 ······················································································· 55 致谢 ······················································································· 57
图目录 图1-11995到2012年全球无线通信用户数量估计 ….1 图1-2接收机的一般架构...… .2 图1-3线性度与噪声之间的折衷...… ..2 图2-1三阶交调量对有用信号的影响.…. ..5 图2-2带内三阶交调量的干扰… .5 图2-3三阶交调点在对数坐标上的表示. 6 图2-4多级级联的P3. 图2-5一个频点三阶交调量的两种产生方式 .8 图2-6互交调与复合三阶交调产生差拍数对比… 10 图2-7 宽带信号的复合三阶差拍分布… 11 图2-8LNA二端口噪声等效电路. 13 图2-9不同输入下的信号噪声失真比 15 图2-10噪声系数对信号噪声失真比的影响. .17 图2-11非线性对信号噪声失真比的影响… .18 图2-12可变增益模块输入与输出、增益的特性.…19 图2-13级联下目标功率与后级最优输入点的关系.…20 图2-14级联情况下后级信号噪声失真比与输入的关系 21 图2-15外差架构下信号传输过程....… 23 图2-16外差接收机的基本架构… 23 图2-17双中频外差接收机架构 24 图2-18零中频接收机架构… 24 图3-1反馈自动增益控制环路.…。 26 图3-2前馈自动增益控制环路 。。 27 图33数字编码的混合自动增益控制环路 28 图3-4全球通信标准分布... 29 图3-5基于多标准的数字电视调谐器架构 30 图3-6调谐器增益调整流程. 31 图3-7系统自动增益控制环路 32 图3-8系统控制状态图.… 34 图3-9增益核心算法状态图… .36 图3-10增益调整流程图38 公
III 图目录 图 1-1 1995 到 2012 年全球无线通信用户数量估计 ....................................... 1 图 1-2 接收机的一般架构 ............................................................................... 2 图 1-3 线性度与噪声之间的折衷 .................................................................... 2 图 2-1 三阶交调量对有用信号的影响 ............................................................. 5 图 2-2 带内三阶交调量的干扰 ........................................................................ 5 图 2-3 三阶交调点在对数坐标上的表示.......................................................... 6 图 2-4 多级级联的 IP3 .................................................................................... 7 图 2-5 一个频点三阶交调量的两种产生方式 .................................................. 8 图 2-6 互交调与复合三阶交调产生差拍数对比 ............................................. 10 图 2-7 宽带信号的复合三阶差拍分布 ........................................................... 11 图 2-8 LNA 二端口噪声等效电路.................................................................. 13 图 2-9 不同输入下的信号噪声失真比 ........................................................... 15 图 2-10 噪声系数对信号噪声失真比的影响 .................................................. 17 图 2-11 非线性对信号噪声失真比的影响 ...................................................... 18 图 2-12 可变增益模块输入与输出、增益的特性 ........................................... 19 图 2-13 级联下目标功率与后级最优输入点的关系 ....................................... 20 图 2-14 级联情况下后级信号噪声失真比与输入的关系 ................................ 21 图 2-15 外差架构下信号传输过程 ................................................................ 23 图 2-16 外差接收机的基本架构 .................................................................... 23 图 2-17 双中频外差接收机架构 .................................................................... 24 图 2-18 零中频接收机架构 ........................................................................... 24 图 3-1 反馈自动增益控制环路 ...................................................................... 26 图 3-2 前馈自动增益控制环路 ...................................................................... 27 图 3-3 数字编码的混合自动增益控制环路 .................................................... 28 图 3-4 全球通信标准分布 ............................................................................. 29 图 3-5 基于多标准的数字电视调谐器架构 .................................................... 30 图 3-6 调谐器增益调整流程 ......................................................................... 31 图 3-7 系统自动增益控制环路 ...................................................................... 32 图 3-8 系统控制状态图................................................................................. 34 图 3-9 增益核心算法状态图 ......................................................................... 36 图 3-10 增益调整流程图............................................................................... 38
图3-11功率检测器输入输出关系.... ..39 图3-12功率检测器的编码.… .39 图3-13线性化编码后PWD输出功率与输出功率码关系 40 图3-14幅度检测器的编码.… .41 图3-15线性化编码后RSSl输出功率与输出功率码关系 .41 图3-16RC校正状态转换图..... 42 图3-17功率检测器的直流校正流程 43 图3-18二分法校正过程。 43 图3-19脉宽调制译码模块… 44 图3-20占空比的校正 .44 图3-21除法控制模块状态图. .45 图3-22系统可知的3个信号位置. .45 图3-23P1=P2=P3… 46 图3-24P1>P2=P3 46 图3-25P1>P2>P3.… 46 图3-26P1=P2>P3 47 图3-27多级系统中增益分配对非线性和噪声的影响, 48 图3-28 Mixer增益模式选择模块状态图 48 图4-1系统各级的输出.… 49 图4-2PWD及两个RSSI的输出.. 49 图4-3系统控制流程 50 图4-4二分法增益设置.... .50 图4-5线性法增益设置... 50 图4-6电阻电容校正模块仿真.…。 51 图4-7功率检测器直流校正模块仿真.… 51 图4-8脉宽调制译码模块仿真 52 图4-9自动增益控制下各级增益的变化. 53 图4-10脉宽调制译码模块测试结果 53 IV
IV 图 3-11 功率检测器输入输出关系................................................................. 39 图 3-12 功率检测器的编码 ........................................................................... 39 图 3-13 线性化编码后 PWD 输出功率与输出功率码关系 ............................. 40 图 3-14 幅度检测器的编码 ........................................................................... 41 图 3-15 线性化编码后 RSSI 输出功率与输出功率码关系 ............................. 41 图 3-16 RC 校正状态转换图 ........................................................................ 42 图 3-17 功率检测器的直流校正流程 ............................................................. 43 图 3-18 二分法校正过程............................................................................... 43 图 3-19 脉宽调制译码模块 ........................................................................... 44 图 3-20 占空比的校正 .................................................................................. 44 图 3-21 除法控制模块状态图 ....................................................................... 45 图 3-22 系统可知的 3 个信号位置 ................................................................ 45 图 3-23 P1 = P2 = P3 .................................................................................... 46 图 3-24 P1 > P2 = P3 .................................................................................... 46 图 3-25 P1 > P2 > P3 .................................................................................... 46 图 3-26 P1 = P2 > P3 .................................................................................... 47 图 3-27 多级系统中增益分配对非线性和噪声的影响 .................................... 48 图 3-28 Mixer 增益模式选择模块状态图 ....................................................... 48 图 4-1 系统各级的输出................................................................................. 49 图 4-2 PWD 及两个 RSSI 的输出 ................................................................. 49 图 4-3 系统控制流程 .................................................................................... 50 图 4-4 二分法增益设置................................................................................. 50 图 4-5 线性法增益设置................................................................................. 50 图 4-6 电阻电容校正模块仿真 ...................................................................... 51 图 4-7 功率检测器直流校正模块仿真 ........................................................... 51 图 4-8 脉宽调制译码模块仿真 ...................................................................... 52 图 4-9 自动增益控制下各级增益的变化........................................................ 53 图 4-10 脉宽调制译码模块测试结果 ............................................................. 53
表目录 表3-1前馈和反馈环路优缺对比 27 表3-2全球通信标准分布 29 表3-3各模块增益分配. .32
V 表目录 表 3-1 前馈和反馈环路优缺对比 .................................................................. 27 表 3-2 全球通信标准分布 ............................................................................. 29 表 3-3 各模块增益分配................................................................................. 32
摘要 从19世纪末开始,射频接收机就作为通信系统中的一个基本模块而存在。 近年来随着无线通信的发展,射频接收机更是作为从电磁波中还原出系统可识别 的电信号的传输模块而越来越受到工程师们的关注。 自动增益控制系统作为接收机内必不可少的模块,其主要功能是调节信号强 弱,以确保在输入信号功率变化很大的情况下仍能保持输出的稳定。因此需要对 接收机内的各个可变增益模块进行增益的调节,以达到稳定输出的效果。随着片 内全集成接收机的出现,如何对多级级联的可变增益模块进行增益分配成为另 个需要研究的问题。本文对影响信号的两种主要干扰,噪声和非线性,进行了详 细的分析讨论,并在此基础上推出了可以用于衡量信号质量的指标一信号噪声失 真比。 在了解接收机架构的基础上,以之前推导的信号噪声失真比理论为依据,同 时考虑实际工作时各种可能遇到的带外干扰情况,对一个数字电视调谐器的各级 可变增益模块进行增益分配。 同时本论文将增益调整与系统控制联系到一起,对一个数字电视调谐器芯片 进行了合理的系统控制,并介绍了系统内各个数字模块及其功能。 最后在文章的第四章给出了各个模块的仿真结果及芯片的测试结果,以验证 理论的正确性及电路功能。 关键词:射频接收机,自动增益控制,信号噪声失真比,接收机系统控制,噪声, 线性度,复合三阶失真 中图分类号:TN4 VI
VI 摘要 从 19 世纪末开始,射频接收机就作为通信系统中的一个基本模块而存在。 近年来随着无线通信的发展,射频接收机更是作为从电磁波中还原出系统可识别 的电信号的传输模块而越来越受到工程师们的关注。 自动增益控制系统作为接收机内必不可少的模块,其主要功能是调节信号强 弱,以确保在输入信号功率变化很大的情况下仍能保持输出的稳定。因此需要对 接收机内的各个可变增益模块进行增益的调节,以达到稳定输出的效果。随着片 内全集成接收机的出现,如何对多级级联的可变增益模块进行增益分配成为另一 个需要研究的问题。本文对影响信号的两种主要干扰,噪声和非线性,进行了详 细的分析讨论,并在此基础上推出了可以用于衡量信号质量的指标-信号噪声失 真比。 在了解接收机架构的基础上,以之前推导的信号噪声失真比理论为依据,同 时考虑实际工作时各种可能遇到的带外干扰情况,对一个数字电视调谐器的各级 可变增益模块进行增益分配。 同时本论文将增益调整与系统控制联系到一起,对一个数字电视调谐器芯片 进行了合理的系统控制,并介绍了系统内各个数字模块及其功能。 最后在文章的第四章给出了各个模块的仿真结果及芯片的测试结果,以验证 理论的正确性及电路功能。 关键词:射频接收机,自动增益控制,信号噪声失真比,接收机系统控制,噪声, 线性度,复合三阶失真 中图分类号:TN4
Abstract Receiver has been a basic block in communication systems since the late 19th century.Nowadays,with the development of wireless communication, receiver has acquired an essential role in engineer's mind.receiver's main function is to recover the signals from the transmitted waves and convert them to electronic signals. Automatic gain control(AGC),as a necessary part of receiver,has a main function to adjust the power of signals,which can keep the output signal stable while the input signals change in a wide range.In order to implement this function,AGC needs to control the gain of all the variable gain blocks in the receiver.Because of the invention of fully integrated receiver,it has been a new problem to set the gain of each variable gain blocks.In this dissertation we make a discussion of noise and distortion in detail,which are the main interferences in communication.Then we advance a new theory-signal to noise and distortion ratio(SNDR),which can measure signal quality. After a brief introduce of receiver architectures,we can work out a solution to set every variable gain blocks of a TV-tuner,with the help of SNDR and consideration of out-band distortion. This treatise also combines AGC with system control.Give a detail algorithm of system control and AGC in the TV-tuner.And introduce other digital blocks briefly in this chip. Finally,simulation results and measured results are presented,which verified the function of AGC and the chip. Key Words:RF receiver,AGC,SNDR,receiver system control,noise, distortion,CTB VI川
VII Abstract Receiver has been a basic block in communication systems since the late 19th century. Nowadays, with the development of wireless communication, receiver has acquired an essential role in engineer’s mind. receiver’s main function is to recover the signals from the transmitted waves and convert them to electronic signals. Automatic gain control (AGC), as a necessary part of receiver, has a main function to adjust the power of signals, which can keep the output signal stable while the input signals change in a wide range. In order to implement this function, AGC needs to control the gain of all the variable gain blocks in the receiver. Because of the invention of fully integrated receiver, it has been a new problem to set the gain of each variable gain blocks. In this dissertation we make a discussion of noise and distortion in detail, which are the main interferences in communication. Then we advance a new theory - signal to noise and distortion ratio (SNDR), which can measure signal quality. After a brief introduce of receiver architectures, we can work out a solution to set every variable gain blocks of a TV-tuner, with the help of SNDR and consideration of out-band distortion. This treatise also combines AGC with system control. Give a detail algorithm of system control and AGC in the TV-tuner. And introduce other digital blocks briefly in this chip. Finally, simulation results and measured results are presented, which verified the function of AGC and the chip. Key Words: RF receiver, AGC, SNDR, receiver system control, noise, distortion, CTB
第一章概述 第一章概述 1.1研究背景 在信息技术高度发展的今天,通信产品便携化己成为当下发展趋势。手机, 平板电脑等各种多媒体终端给人们的生活带来了意想不到的变化,无线传输作为 一种便捷的通信方式正越来越受到工程师们的青睐。图1-1显示了自1995年以 来,全球无线通信系统的用户数量估计值[1],很明显,从上个世纪90年代中期 开始,无线通信系统的数量一直以很快速度在增长。 400M 350M Number L300M 250M p scri 200M 150M 100M 50M 1095 爱 溫 Years 图1-11995到2012年全球无线通信用户数量估计 因此,作为无线通信系统中十分重要的基本模块,接收机的研发就变得尤为 重要。为了满足现代通信系统对高集成度、高性能、低功耗、低成本的要求,工 程师们充分发挥自己的专业才能,不断地研发出各种应用于不同系统的接收机。 按照应用的不同,可以分为应用于数字电视、手机、无线本地局域网、蓝牙、近 场通信等方面的接收机。按照处理信号的方式来分,又可以分为模拟接收机和数 字接收机。按照所采用工艺的不同,又有:互补金属氧化物半导体工艺(CMOS), 双极管工艺(Bipolar),双极互补金属氧化物半导体工艺(BiCMOS),锗硅工艺
第一章 概述 1 第一章 概述 1.1 研究背景 在信息技术高度发展的今天,通信产品便携化已成为当下发展趋势。手机, 平板电脑等各种多媒体终端给人们的生活带来了意想不到的变化,无线传输作为 一种便捷的通信方式正越来越受到工程师们的青睐。图 1-1 显示了自 1995 年以 来,全球无线通信系统的用户数量估计值[1],很明显,从上个世纪 90 年代中期 开始,无线通信系统的数量一直以很快速度在增长。 50M 100M 150M 200M 250M 300M 350M 400M Years 图 1-1 1995 到 2012 年全球无线通信用户数量估计 因此,作为无线通信系统中十分重要的基本模块,接收机的研发就变得尤为 重要。为了满足现代通信系统对高集成度、高性能、低功耗、低成本的要求,工 程师们充分发挥自己的专业才能,不断地研发出各种应用于不同系统的接收机。 按照应用的不同,可以分为应用于数字电视、手机、无线本地局域网、蓝牙、近 场通信等方面的接收机。按照处理信号的方式来分,又可以分为模拟接收机和数 字接收机。按照所采用工艺的不同,又有:互补金属氧化物半导体工艺(CMOS), 双极管工艺(Bipolar),双极互补金属氧化物半导体工艺(BiCMOS),锗硅工艺
第一章概述 (SG)等。根据集成度的不同,可以分为:分立元件接收机、部分集成接收机、 全集成接收机[2]。 无论是哪一种接收机,其基本架构都是如图1-2所示[1]。在无线通信系统中, 射频电路是紧接着天线直到解调器或调制器部分,其任务是执行信号的传输,保 证信号良好的功率传输或功率控制是衡量一个收发机的主要标准3]。因此,如 何从系统的角度去优化协调接收机的各个模块对一个收发机来说是至关重要的。 自动增益控制(Automatic gain control,,AGC)的引入从控制信号功率的角度来优 化系统,通过对接收机内的各级进行增益上的调整,来达到优化信号的线性度跟 噪声的效果。 Antenna RF Filter LNA MIXER Channel Filter AD 图1-2接收机的一般架构 1.2研究动机 最初的自动增益控制主要是指控制有可变增益功能的单个模块的增益。信号 的干扰主要来自于非线性和噪声。如图1-3所示,以单个可变增益模块为例,当 输入的信号较小时,噪声成为恶化信号的主要因素,因此需要调高增益,然而, 调高增益会恶化信号的线性度。由此可知,调整增益可以权衡信号的线性度跟噪 声。 gain linearity noise 图1-3线性度与噪声之间的折衷 对于有多个可变增益模块的接收机,当信号的输入输出功率已固定时,自动 增益控制要解决的问题就是如何分配各级的增益,分配的原则是:合理配置各级 增益,以优化信号的线性度与噪声。本论文以一个宽带多标准电视调谐器(TV
第一章 概述 2 (SiGe)等。根据集成度的不同,可以分为:分立元件接收机、部分集成接收机、 全集成接收机[2]。 无论是哪一种接收机,其基本架构都是如图 1-2 所示[1]。在无线通信系统中, 射频电路是紧接着天线直到解调器或调制器部分,其任务是执行信号的传输,保 证信号良好的功率传输或功率控制是衡量一个收发机的主要标准[3]。因此,如 何从系统的角度去优化协调接收机的各个模块对一个收发机来说是至关重要的。 自动增益控制(Automatic gain control, AGC)的引入从控制信号功率的角度来优 化系统,通过对接收机内的各级进行增益上的调整,来达到优化信号的线性度跟 噪声的效果。 图 1-2 接收机的一般架构 1.2 研究动机 最初的自动增益控制主要是指控制有可变增益功能的单个模块的增益。信号 的干扰主要来自于非线性和噪声。如图 1-3 所示,以单个可变增益模块为例,当 输入的信号较小时,噪声成为恶化信号的主要因素,因此需要调高增益,然而, 调高增益会恶化信号的线性度。由此可知,调整增益可以权衡信号的线性度跟噪 声。 图 1-3 线性度与噪声之间的折衷 对于有多个可变增益模块的接收机,当信号的输入输出功率已固定时,自动 增益控制要解决的问题就是如何分配各级的增益,分配的原则是:合理配置各级 增益,以优化信号的线性度与噪声。本论文以一个宽带多标准电视调谐器(TV