正在加载图片...
学通扳 57 Xie S C, Yang H, Luo G M, et al. Geomicrobial functional groups: A window on the interaction between life and environments(in Chinese ). Chin Sci Bull!( Chin ver,2012,57:3-22[谢树成杨欢,罗根明,等地质微生物功能群:生命与环境相互作用的重要突破口.科学通报,2012,57 58 Kendall B, Anbar A D, Kappler A, et al. The global iron cycle. In: Knoll A H, Canfield D E, Konhauser k, et al., eds. Fundamentals of Geobiology. Chichester, UK: John Wiley Sons, Ltd, 2012. 65-92 59 Lin w, Bazylinski D A, Xiao T, et al. Life with compass: Diversity and biogeography of magnetotactic bacteria. Environ Microbiol, 2014, 16 2646-2658 60 Wu W F, Li Y L, Pan Y X. Microbial mineralization in Precambrian banded iron formations(in Chinese). Chin J Geol, 2012, 47: 548-560UX 芳,李一良,潘永信.微生物参与前寒武纪条带状铁建造沉积的研究进展.地质科学,2012,47:548-560 61 Lyons T w, Reinhard C T, Planavsky N J. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 2014, 506: 307-315 62 Colman DR, Poudel S, Stamps B W, et al. The deep, hot biosphere: Twenty-five years of retrospection. Proc Natl Acad Sci USA, 2017, 114 895-6903 63 Cockell C S, Bush T, Bryce C, et al. Habitability: A review. Astrobiology, 2016, 16: 89-117 64 Shahar A, Driscoll P, Weinberger A, et al. What makes a planet habitable? Science, 2019, 364: 434-435 5 Hao X L, Li Y L. Experimental approach to the direct interaction between the H2O-CO2 atmosphere and the crust on the earliest arth Implications for the early evolution of minerals and the proto-atmosphere. Front Earth Sci, 2018, 6: 1-14 66 Hoffiman P F, Kaufman A J, Halverson G P, et al. A neoproterozoic snowball earth. Science, 1998, 281: 1342-1346 67 Kennett J P, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 1991 68 Martins Z, Cottin H, Kotler J M, et al. Earth as a tool for Astrobiology-A European perspective Space Sci Rev, 2017, 209: 43-81 69 Xiao L, Wang J, Dang Y, et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau(NW China). Earth-Sci Rev, 2017,164:84-101 70 Angles A, Li Y. The western Qaidam Basin as a potential Martian environmental analogue: An overview. J Geophys Res Planets, 2017, 122: 856- 888 71 Merino N, Aronson H S, Bojanova D P, et al. Living at the extremes: Extremophiles and the limits of life in a planetary context. Front Microbiol. 2019,10:1-39 72 Lunine J l, Chambers J, Morbidelli A, et al. The origin of water on Mars. Icarus, 2003, 165: 1-8 73 Stevenson D J. Mars core and magnetism. Nature, 2001, 412: 214-219 74 Acuna M H, Connerney JE P, Lin R P, et al. Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science, 1999, 284: 790-793 75 Breuer D. Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. J Geophys Res, 2003,108:5072 76 Connemey J E P, Acuna M H, Ness N F, et al. Tectonic implications of Mars crustal magnetism. Proc Natl Acad Sci USA, 2005, 102: 14970- 497 77 Haberle R M, Catling D C, Carr M H, et al. The early mars climate system. In: Haberle R M, Clancy R T, Forget F, et al., eds. The Atmosphere and Climate of Mars. Cambridge: Cambridge University Press, 2017. 526-568 78 Michalski J R, Onstott T C, Mojzsis S J, et al. The Martian subsurface as a potential window into the origin of life. Nat Geosci, 2017, 11: 21-26 79 Russell M J, Murray A E, Hand K P. The possible emergence of life and differentiation of a shallow biosphere on irradiated icy worlds: The example of Europa. Astrobiology, 2017, 17: 1265-1273 80 Seewald J S Detecting molecular hydrogen on Enceladus. Science, 2017, 356: 132-133 81 Seager S. Exoplanet habitability. Science, 2013, 340: 577-581 82 Kraus J. We wait and wonder. Cosm Search, 1979, 1: 31 83 Participants NTW. NASA and the search for technosignatures: A report from the NASA Technosignatures Workshop. 2018, ar XiV: 1812.08681 Meyer M. Foreword: Mars science laboratory, the first Astrobiology mission to Mars since Viking Space Sci Rev, 2012, 170: 3-4 85 Wang K, Korotev R. Meteorites. In: Hamacher D W, Bank K, eds. Oxford Research Encyclopedia of Planetary Science. Oxford: Oxford University Press, 2019. 1-55 86 Miao B, Xia Z, Zhang C, et al. Progress of Antarctic meteorite survey and research in China. Adv Polar Sci, 2018, 29: 61-77 Martel J, Young D, Peng HH, et al. Biomimetic properties of minerals and the search for life in the Martian meteorite ALH84001. Annu Rev Earth Planet Sci, 2012, 40: 167-193 88 Lin Y, El Goresy A, Hu S, et al. NanosIMS analysis of organic carbon from the Tissint Martian meteorite: Evidence for the past existence of subsurface organic-bearing fluids on Mars. Meteorit Planet Sci, 2014, 49: 2201-2218 DownloadedtoiP:192.168.0.213On:2019-12-2610:00:34http://enginescichina.com/dou/10.1360/tb-2019-039657 Xie S C, Yang H, Luo G M, et al. Geomicrobial functional groups: A window on the interaction between life and environments (in Chinese). Chin Sci Bull (Chin Ver), 2012, 57: 3−22 [谢树成, 杨欢, 罗根明, 等. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 2012, 57: 3–22] 58 Kendall B, Anbar A D, Kappler A, et al. The global iron cycle. In: Knoll A H, Canfield D E, Konhauser K, et al., eds. Fundamentals of Geobiology. Chichester, UK: John Wiley & Sons, Ltd, 2012. 65–92 59 Lin W, Bazylinski D A, Xiao T, et al. Life with compass: Diversity and biogeography of magnetotactic bacteria. Environ Microbiol, 2014, 16: 2646–2658 60 Wu W F, Li Y L, Pan Y X. Microbial mineralization in Precambrian banded iron formations (in Chinese). Chin J Geol, 2012, 47: 548−560 [吴文 芳, 李一良, 潘永信. 微生物参与前寒武纪条带状铁建造沉积的研究进展. 地质科学, 2012, 47: 548−560] 61 Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 2014, 506: 307–315 62 Colman D R, Poudel S, Stamps B W, et al. The deep, hot biosphere: Twenty-five years of retrospection. Proc Natl Acad Sci USA, 2017, 114: 6895–6903 63 Cockell C S, Bush T, Bryce C, et al. Habitability: A review. Astrobiology, 2016, 16: 89–117 64 Shahar A, Driscoll P, Weinberger A, et al. What makes a planet habitable? Science, 2019, 364: 434–435 65 Hao X L, Li Y L. Experimental approach to the direct interaction between the H2O-CO2 atmosphere and the crust on the earliest Earth: Implications for the early evolution of minerals and the proto-atmosphere. Front Earth Sci, 2018, 6: 1–14 66 Hoffman P F, Kaufman A J, Halverson G P, et al. A neoproterozoic snowball earth. Science, 1998, 281: 1342–1346 67 Kennett J P, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 1991, 353: 225–229 68 Martins Z, Cottin H, Kotler J M, et al. Earth as a tool for Astrobiology—A European perspective. Space Sci Rev, 2017, 209: 43–81 69 Xiao L, Wang J, Dang Y, et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Sci Rev, 2017, 164: 84–101 70 Anglés A, Li Y. The western Qaidam Basin as a potential Martian environmental analogue: An overview. J Geophys Res Planets, 2017, 122: 856– 888 71 Merino N, Aronson H S, Bojanova D P, et al. Living at the extremes: Extremophiles and the limits of life in a planetary context. Front Microbiol, 2019, 10: 1–39 72 Lunine J I, Chambers J, Morbidelli A, et al. The origin of water on Mars. Icarus, 2003, 165: 1–8 73 Stevenson D J. Mars’ core and magnetism. Nature, 2001, 412: 214–219 74 Acuna M H, Connerney J E P, Lin R P, et al. Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science, 1999, 284: 790–793 75 Breuer D. Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. J Geophys Res, 2003, 108: 5072 76 Connerney J E P, Acuña M H, Ness N F, et al. Tectonic implications of Mars crustal magnetism. Proc Natl Acad Sci USA, 2005, 102: 14970– 14975 77 Haberle R M, Catling D C, Carr M H, et al. The early mars climate system. In: Haberle R M, Clancy R T, Forget F, et al., eds. The Atmosphere and Climate of Mars. Cambridge: Cambridge University Press, 2017. 526–568 78 Michalski J R, Onstott T C, Mojzsis S J, et al. The Martian subsurface as a potential window into the origin of life. Nat Geosci, 2017, 11: 21–26 79 Russell M J, Murray A E, Hand K P. The possible emergence of life and differentiation of a shallow biosphere on irradiated icy worlds: The example of Europa. Astrobiology, 2017, 17: 1265–1273 80 Seewald J S. Detecting molecular hydrogen on Enceladus. Science, 2017, 356: 132–133 81 Seager S. Exoplanet habitability. Science, 2013, 340: 577–581 82 Kraus J. We wait and wonder. Cosm Search, 1979, 1: 31 83 Participants NTW. NASA and the search for technosignatures: A report from the NASA Technosignatures Workshop. 2018, arXiv: 1812.08681 84 Meyer M. Foreword: Mars science laboratory, the first Astrobiology mission to Mars since Viking. Space Sci Rev, 2012, 170: 3–4 85 Wang K, Korotev R. Meteorites. In: Hamacher D W, Bank K, eds. Oxford Research Encyclopedia of Planetary Science. Oxford: Oxford University Press, 2019. 1–55 86 Miao B, Xia Z, Zhang C, et al. Progress of Antarctic meteorite survey and research in China. Adv Polar Sci, 2018, 29: 61–77 87 Martel J, Young D, Peng H H, et al. Biomimetic properties of minerals and the search for life in the Martian meteorite ALH84001. Annu Rev Earth Planet Sci, 2012, 40: 167–193 88 Lin Y, El Goresy A, Hu S, et al. NanoSIMS analysis of organic carbon from the Tissint Martian meteorite: Evidence for the past existence of subsurface organic-bearing fluids on Mars. Meteorit Planet Sci, 2014, 49: 2201–2218 10 Downloaded to IP: 192.168.0.213 On: 2019-12-26 10:00:34 http://engine.scichina.com/doi/10.1360/TB-2019-0396
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有