正在加载图片...
Ll.=0 边界条件 0 0=4(b-y) 0 b Bsin 卩+A(b-y)a-x) 0 v +v B =0 J=aBsin Ab(a-x) X(x)=C2sin n=1.2 v(x,y)=∑{ ny+B, ex n Y()=Expl nyu+bex nz =BSi Ab(a-x) Bsin" -Ab(a-x)=2(A,+B,sin 0 b ∑{4ep["]+B,ext- }11. x y b 0 a 0 A(b − y ) 0 ax B  sin + = 0 xx yy u u 边界条件: ( ) 0 u A b y x = = − u x = a = 0 ax u y B  = 0 = sin = 0 . u y = b u = v + A ( b − y)( a − x ) + = 0 xx yy v v v x = 0 = 0 v x = a = 0 sin ( ) 0 Ab a x ax v y = = B − −  = 0 . y = b v l n x X x C  ( ) = 2 sin n = 1 , 2 ,  ( ) exp[ ] exp[ ] an y B an y Y y A   = + − a n x a n y B a n y v x y A n n n    ( , ) { exp[ ] exp[ ]}sin 1 =  + − = sin ( ) 0 Ab a x ax v y = = B − −  a n x Ab a x A B ax B n n n   sin ( ) { }sin 1 − − =  + = =0 . y = b v a n x a n b B a n b A n n n    0 { exp[ ] exp[ ]}sin 1 =  + − =
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有