nb nTb ann 0=A, exp[]+B, exp[ A exp Cos n Sin n anab Ab(a-x)=∑B(1-e)s nza noN 2B 246 2B aaB B,(l-ea)=-[Bsin -Ab(a-x)]sin"ax nIsin 2k+1)x 2B 4a46 2(2k+1)mb2(2k+l)mb 2B 4a46 2(2k+1)mb B4=[ Je a /e Ak (2k+1)丌 2k+1) 2B v(x,y)={ 2b 丌(e aaB (2k+1)丌y +e 2(2k+)z(2k+1/s(2k+1)m (2k+1)r(ea-1) 2 Be a sinh( (2k+1)mb(2k+1) aaB (2k+1)z V(, y) 丌k=1 (2k+1)sinh(2k+1)b-Si0 exp[ ] exp[ ] a n b B a n b An n = + − ] 2 exp[ a n b An Bn = − − a n x Ab a x B e a x B a n b n n sin ( ) (1 )sin 2 1 − = − − = − dx a n x Ab a x a x B a B e a a n b n [ sin ( )]sin 2 (1 ) 0 2 − = − − − dx a n x x a B Ab a [ ]sin 2 2 0 = + a 2 Cos n n a 2 Sin n n2 2 (2 1) 2 4 + = + k B aAb a k x a k y a k b a k y k e aAb a x a y a y a b e B v x y a k b k a b (2 1) ]}sin 2(2 1) (2 1) ] exp[ (2 1) { exp[ (2 1) ( 1) 4 ) exp( )]sin 2 [exp( ( 1) 2 ( , ) { 2(2 1) 1 2 + + − + + + − + − + − − − = + = ] /[ 1] (2 1) 2 4 [ 2(2 1) 2(2 1) − + = + + + a k b a k b k e e k B aAb B ]/[ 1] (2 1) 2 4 [ 2(2 1) − + = + + a k b k e k B aAb A a k x a k b k a k y a k b aAb a x a b a y a b Be v x y k a b (2 1) sin (2 1) (2 1)sinh ) (2 1) (2 1) sinh( 4 sin sinh 2 sinh( ) ( , ) 1 + + + + − + + − = =