正在加载图片...
0 这样,在取定一组基之后,就建立了由数域P上的n维线性空间V的线性变换到 数域P上的n×n矩阵的一个映射前面结论1说明这个映射是单射,结论2说明 这个映射是满射换句话说,在这二者之间建立了一个双射这个对应的重要性表 现在它保持运算,即有 定理2设s1,E2…,E是数域P上n维线性空间V的一组基,在这组基下,每 个线性变换按公式(5)对应一个n×n矩阵,这个对应具有以下性质: 1)线性变换的和对应于矩阵的和 2)线性变换的乘积对应于矩阵的乘积; 3)线性变换的数量乘积对应于矩阵的数量乘积; 4)可逆的线性变换与可逆矩阵对应,且逆变换对应于逆矩阵. 定理2说明数域P上n维线性空间的全体线性变换组成的集合L()对于 线性变换的加法与数量乘法构成P上一个线性空间,与数域P上n级方阵构成的 线性空间Pm同构 定理3设线性变换A在基E1E2,…,En下的矩阵是A,向量在基E,2…,En 下的坐标是(x1x2…xn),则A在基61:E2…,En下的坐标(1,y2,…yn)可以按 公式 计算. 、同一个线性变换在不同基下的矩阵的关系                      0 0 1 1 1   这样,在取定一组基之后,就建立了由数域 P 上的 n 维线性空间 V 的线性变换到 数域 P 上的 nn 矩阵的一个映射.前面结论 1 说明这个映射是单射,结论 2 说明 这个映射是满射.换句话说,在这二者之间建立了一个双射.这个对应的重要性表 现在它保持运算,即有 定理 2 设 n  , , , 1 2  是数域 P 上 n 维线性空间 V 的一组基,在这组基下,每 个线性变换按公式(5)对应一个 nn 矩阵,这个对应具有以下性质: 1)线性变换的和对应于矩阵的和; 2)线性变换的乘积对应于矩阵的乘积; 3)线性变换的数量乘积对应于矩阵的数量乘积; 4)可逆的线性变换与可逆矩阵对应,且逆变换对应于逆矩阵. 定理 2 说明数域 P 上 n 维线性空间 V 的全体线性变换组成的集合 L(V) 对于 线性变换的加法与数量乘法构成 P 上一个线性空间,与数域 P 上 n 级方阵构成的 线性空间 n n P  同构. 定理 3 设线性变换 A 在基 n  , , , 1 2  下的矩阵是 A ,向量  在基 n  , , , 1 2  下的坐标是 ( , , , ) 1 2 n x x  x ,则 A  在基 n  , , , 1 2  下的坐标 ( , , , ) 1 2 n y y  y 可以按 公式               =               n n x x x A y y y   2 1 2 1 计算. 二、同一个线性变换在不同基下的矩阵的关系
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有