孙浩等:基于刚性块体模型的近-远场崩落矿岩流动特性 213· 倒置水滴理论,在放矿初始阶段,松动体最大宽度 [12]Laubscher D H.Block Cave Manual.Design Topic:Drawpoint 随高度增大呈幂函数形式快速增加;随后,松动体 Spacing and Draw Control Dissertation].Brisbane:The University 最大宽度随高度增大而近似线性增加.因此,远场 of Queensland,2000 [13]Power G R.Modelling Granular Flow in Caving Mines:Large 条件下松动体高度与最大宽度间的近似线性关系 Scale Physical Modelling and Full Scale Experiments 更有利于指导大型自然崩落法矿山的采场结构参 [Dissertation].Brisbane:The University of Queensland,2004 数优选 [14]Castro R,Trueman R,Halim A.A study of isolated draw zones in (3)崩落矿岩流动过程中存在明显的应力拱 block caving mines by means of a large 3D physical model.Int 效应.随着矿岩散体松动范围不断扩大,松动体外 Rock Mech Min Sci,2007,44(6):860 围一定范围内的垂直应力均呈明显下降趋势,水 [15]Tao G Q,Yang S J,Feng Y F.Experimental research on granular 平应力逐渐增大并在松动区域到达前出现激增现 flow characters of caved ore and rock.Rock Soil Mech,2009 30(10):2950 象:而松动体内的水平应力与垂直应力则急剧下 (陶干强,杨仕教,任凤玉.崩落矿岩散粒体流动性能试验研究 降至较低水平, 岩土力学,2009,30(10):2950) [16]Wang H J,Ying S H,Wu A X,et al.Experimental study of the 参考文献 factors affecting the ore flow mechanism during block caving.J [1]Shen N S,Gu X C,Yin S H.Technology status of block caving China Uniy Min Technol,2010,39(5上:693 method at home and abroad.Min Technol,2009,9(4):1 (王洪江,尹升华,吴爱祥,等.崩落矿岩流动特性及影响因素实 (沈南山,顾晓春,尹升华.国内外自然崩落采矿法技术现状.采 验研究.中国矿业大学学报,2010,39(5):693) 矿技术,2009,9(4):1) [17]Wang Y P,Yu J.Optimization of breaking interval in non-pillar [2] Chitombo G P.Cave mining:16 years after Laubscher's 1994 sublevel caving mining.J Cent South Univ Sci Technol,2014, paper 'Cave mining-state of the art'.Min Technol,2010,119(3): 45(2):603 132 (王云鹏,余健.无底柱分段崩落法崩矿步距的优化.中南大学 [3]Pierce M E.A Model for Gravity Flow of Fragmented Rock in 学报(自然科学版),2014,45(2):603) Block Caving Mines[Dissertation].Brisbane:The University of [18]Sao A L.Experimental research on mullock movement in the side Queensland,2010 drawing.Min Metall Eng,2012,32(3):1 [4]Wang H C.Ore Drawing.Beijing:Metallurgical Industry Press. (邵安林.端部放矿废石移动规律试验研究.矿治工程,2012 1982 32(3):1) (王汉昌.放矿学.北京:治金工业出版社,1982) [19]Xu S,An L,Li Y H,et al.Optimization of caving space for [5]LiR F,Guo JP.Quasi-ellipsoid Drawing Theory and Verification different angles of end-wall during pillarless sublevel caving.J of Drawing.Beijing:Metallurgical Industry Press,2016 Northeast Uniy Nat Sci,2012,33(1):120 (李荣福,郭进平,类椭球体放矿理论及放矿理论检验.北京:冶 (徐帅,安龙,李元辉,等.无底柱分段崩落法多端壁倾角下崩矿 金工业出版社,2016) 步距优化.东北大学学报(自然科学版),2012,33(1):120) [6]Ren F Y.Stochastic Medium Theory for Ore Drawing and Its [20]Castro R,Pineda M.The role of gravity flow in the design and Application.Beijing:Metallurgical Industry Press,1994 planning of large sublevel stopes.J South Afr Inst Min Metall, (任凤玉.随机介质放矿理论及其应用.北京:冶金工业出版社, 2015,115(2):113 1994) [21]Sun H,Jin A B,Gao Y T,et al.Experimental research on the [7]Frostrom J.Examination of Equivalent Model Materials for expectation body theory and optimization of the rate of advance Development and Design of Sublevel Caving[Dissertation]. during ore breaking in side drawing.Chin J Eng,2016,38(9): Stockholm:Royal Institute of Technology,1970 1197 [8]Jin A B,Sun H,Wu S C,et al.Confirmation of the upside-down (孙浩,金爱兵,高永涛,等.期望体理论的实验研究及湍部放可矿 drop shape theory in gravity flow and development of a new 崩矿步距优化.工程科学学报,2016,38(9):1197) empirical equation to calculate the shape.Int/Rock Mech Min Sci, [22]Cundall P A,Strack O D L.A discrete numerical model for 2017,92:91 granular assemblies.Geotechnique,1979,29(1):47 [9]Cssr R K.Gravity flow of granular materials in hoppers and bins [23]Zhu HC.PFC and application case of caving study.Chin/Rock Int J Rock Mech Min Sci Geomech Abs,1965.2(1):25 Mech Eng,2006,25(9J:1927 [10]Cssr R K.Gravity flow of granular materials in hoppers and bins in (朱焕春.P℉C及其在矿山崩落开采研究中的应用.岩石力学与 mines-II.Coarse material.Int J Rock Mech Min Sci Geomech 工程学报,2006.25(9):1927) Abx,1965,2(3):277 [24]Hashim M H M.Particle Percolation in Block Caving [11]Janelid I,Kvapli R.Sublevel caving.Int J Rock Mech Min Sci Mines[Dissertation].Sydney:The University of New South Wales, Geomech Abs.1966.3(2):129 2011倒置水滴理论. 在放矿初始阶段,松动体最大宽度 随高度增大呈幂函数形式快速增加;随后,松动体 最大宽度随高度增大而近似线性增加. 因此,远场 条件下松动体高度与最大宽度间的近似线性关系 更有利于指导大型自然崩落法矿山的采场结构参 数优选. (3)崩落矿岩流动过程中存在明显的应力拱 效应. 随着矿岩散体松动范围不断扩大,松动体外 围一定范围内的垂直应力均呈明显下降趋势,水 平应力逐渐增大并在松动区域到达前出现激增现 象;而松动体内的水平应力与垂直应力则急剧下 降至较低水平. 参 考 文 献 Shen N S, Gu X C, Yin S H. Technology status of block caving method at home and abroad. Min Technol, 2009, 9(4): 1 (沈南山, 顾晓春, 尹升华. 国内外自然崩落采矿法技术现状. 采 矿技术, 2009, 9(4):1) [1] Chitombo G P. Cave mining: 16 years after Laubscher ’s 1994 paper 'Cave mining−state of the art'. Min Technol, 2010, 119(3): 132 [2] Pierce M E. A Model for Gravity Flow of Fragmented Rock in Block Caving Mines[Dissertation]. Brisbane: The University of Queensland, 2010 [3] Wang H C. Ore Drawing. Beijing: Metallurgical Industry Press, 1982 (王汉昌. 放矿学. 北京: 冶金工业出版社, 1982) [4] Li R F, Guo J P. Quasi-ellipsoid Drawing Theory and Verification of Drawing. Beijing: Metallurgical Industry Press, 2016 (李荣福, 郭进平. 类椭球体放矿理论及放矿理论检验. 北京: 冶 金工业出版社, 2016) [5] Ren F Y. Stochastic Medium Theory for Ore Drawing and Its Application. Beijing: Metallurgical Industry Press, 1994 (任凤玉. 随机介质放矿理论及其应用. 北京: 冶金工业出版社, 1994) [6] Fröström J. Examination of Equivalent Model Materials for Development and Design of Sublevel Caving[Dissertation]. Stockholm: Royal Institute of Technology, 1970 [7] Jin A B, Sun H, Wu S C, et al. Confirmation of the upside-down drop shape theory in gravity flow and development of a new empirical equation to calculate the shape. Int J Rock Mech Min Sci, 2017, 92: 91 [8] Čssr R K. Gravity flow of granular materials in hoppers and bins. Int J Rock Mech Min Sci Geomech Abs, 1965, 2(1): 25 [9] Čssr R K. Gravity flow of granular materials in hoppers and bins in mines—Ⅱ. Coarse material. Int J Rock Mech Min Sci Geomech Abs, 1965, 2(3): 277 [10] Janelid I, Kvapli R. Sublevel caving. Int J Rock Mech Min Sci Geomech Abs, 1966, 3(2): 129 [11] Laubscher D H. Block Cave Manual, Design Topic: Drawpoint Spacing and Draw Control[Dissertation]. Brisbane: The University of Queensland, 2000 [12] Power G R. Modelling Granular Flow in Caving Mines: Large Scale Physical Modelling and Full Scale Experiments [Dissertation]. Brisbane: The University of Queensland, 2004 [13] Castro R, Trueman R, Halim A. A study of isolated draw zones in block caving mines by means of a large 3D physical model. Int J Rock Mech Min Sci, 2007, 44(6): 860 [14] Tao G Q, Yang S J, Feng Y F. Experimental research on granular flow characters of caved ore and rock. Rock Soil Mech, 2009, 30(10): 2950 (陶干强, 杨仕教, 任凤玉. 崩落矿岩散粒体流动性能试验研究. 岩土力学, 2009, 30(10):2950) [15] Wang H J, Ying S H, Wu A X, et al. Experimental study of the factors affecting the ore flow mechanism during block caving. J China Univ Min Technol, 2010, 39(5): 693 (王洪江, 尹升华, 吴爱祥, 等. 崩落矿岩流动特性及影响因素实 验研究. 中国矿业大学学报, 2010, 39(5):693) [16] Wang Y P, Yu J. Optimization of breaking interval in non-pillar sublevel caving mining. J Cent South Univ Sci Technol, 2014, 45(2): 603 (王云鹏, 余健. 无底柱分段崩落法崩矿步距的优化. 中南大学 学报(自然科学版), 2014, 45(2):603) [17] Sao A L. Experimental research on mullock movement in the side drawing. Min Metall Eng, 2012, 32(3): 1 (邵安林. 端部放矿废石移动规律试验研究. 矿冶工程, 2012, 32(3):1) [18] Xu S, An L, Li Y H, et al. Optimization of caving space for different angles of end-wall during pillarless sublevel caving. J Northeast Univ Nat Sci, 2012, 33(1): 120 (徐帅, 安龙, 李元辉, 等. 无底柱分段崩落法多端壁倾角下崩矿 步距优化. 东北大学学报(自然科学版), 2012, 33(1):120) [19] Castro R, Pineda M. The role of gravity flow in the design and planning of large sublevel stopes. J South Afr Inst Min Metall, 2015, 115(2): 113 [20] Sun H, Jin A B, Gao Y T, et al. Experimental research on the expectation body theory and optimization of the rate of advance during ore breaking in side drawing. Chin J Eng, 2016, 38(9): 1197 (孙浩, 金爱兵, 高永涛, 等. 期望体理论的实验研究及端部放矿 崩矿步距优化. 工程科学学报, 2016, 38(9):1197) [21] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47 [22] Zhu H C. PFC and application case of caving study. Chin J Rock Mech Eng, 2006, 25(9): 1927 (朱焕春. PFC及其在矿山崩落开采研究中的应用. 岩石力学与 工程学报, 2006, 25(9):1927) [23] Hashim M H M. Particle Percolation in Block Caving Mines[Dissertation]. Sydney: The University of New South Wales, 2011 [24] 孙 浩等: 基于刚性块体模型的近−远场崩落矿岩流动特性 · 213 ·