正在加载图片...
又如, 上半球面z=V4-x2-y2和锥面z=√3(x2+y2) 所围的立体在xOy面上的投影区域为:二者交线在 xOy面上的投影曲线所围之域, c x2+y2=1 在xoy面上的投影曲线 z=0 所围圆域:x2+y2≤1,z=0, 2009年7月3日星期五 12 目录 上页 下页 、返回 2009年7月3日星期五 12 目录 上页 下页 返回 z x y o 1 C 所围的立体在 xoy 面上的投影区域为: 上半球面 4 −−= yxz 22 和锥面 )(3 22 += yxz 2 2 1 0 x y z ⎧ + = ⎨ ⎩ = 在 xoy 面上的投影曲线 ⎩ ⎨ ⎧ += −−= )(3 4 : 22 22 yxz yxz 二者交线 C .0,1 22 所围圆域: zyx =≤+ 二者交线在 xoy 面上的投影曲线所围之域 . 又如
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有