正在加载图片...
郭欣等:铜纳米粒子的电化学制备及其氧化物的光电催化分解水性能 ·745· 浓度为0.4mmol·L,电化学反应的生长电位为 [15]Chiang C Y,Aroh K,Franson N,et al.Copper oxide nanoparti- -0.8V下沉积晶种,-0.1V生长15min cle made by flame spray pyrolysis for photoelectrochemical water (2)制备得到的C纳米粒子在经过热处理转变 splitting:Part II.Photoelectrochemical study.Int J Hydrogen 为C0后可以作为光阴极,具有光电催化分解水制氢 Energy,2011,36(24):15519 [16]Izaki M,Nagai M,Maeda K,et al.Electrodeposition of 1.4-V- 的作用.提出了光电流不断衰减的原因是在较高的过 bandgap peopper(II)oxide film with excellent photoactivity. 电位下Cu0电极本身会被还原, Electrochem Soc,2011,158(9)D578 [17]Chiang C Y,Chang M H,Liu HS,et al.Process intensification 参考文献 in the production of photocatalysts for solar hydrogen generation Diao P,Zhang D F,Guo M,et al.Electrocatalytic oxidation of Ind Eng Chem Res,2012,51(14):5207 CO on supported gold nanoparticles and submicroparticles:support [18]Chauhan D,Satsangi V R,Dass S,et al.Preparation and char- and size effects in electrochemical systems.J Catal,2007,250 acterization of nanostructured Cuo thin films for photoelectro- (2):247 chemical splitting of water.Bull Mater Sci,2006,29(7):709 Zhang D,Diao P,Zhang Q.Potential-induced shape evolution of [19]Chiang C Y,Epstein J,Brown A,et al.Biological templates for gold nanoparticles prepared on ITO substrate.J Phys Chem C, antireflective current collectors for photoelectrochemical cell ap- 2009,113(36):15796 plications.Nano Lett,2012,12(11)6005 B]Gacem N,Diao P.Effect of solvent polarity on the assembly Chiang C Y,Shin Y,Aroh K,et al.Copper oxide photocathodes behavior of PVP coated rhodium nanoparticles.Colloids Surf A, prepared by a solution based process.Int J Hydrogen Energy, 2013,417:32 2012,37(10):8232 4]Sarkar A,Mukherjee T,Kapoor S.PVP-stabilized copper nanop- 1]Barreca D,Fornasiero P,asparotto A,et al.The potential of articles:a reusable catalyst for "Click"reaction between terminal supported Cu2O and CuO nanosystems in photocatalytic H2 pro- alkynes and azides in nonaqueous solvents.J Phys Chem C, duction.ChemSusChem,2009,2(3):230 2008,112(9):3334 B2]Penner R M.Mesoscopic metal particles and wires by electro- 5]Li C W,Kanan M W.CO2 reduction at low overpotential on Cu deposition.J Chem B,2002,106(13):3339 electrodes resulting from the reduction of thick Cu,O films.J Am 23] Penner R M.Brownian dynamics simulations of the growth of Chem Soc,2012,134(17):7231 metal nanocrystal ensembles on electrode surfaces in solution:2. 6 Ramyadevi J,Jeyasubramanian K,Marikani A,et al.Synthesis The effect of deposition rate on particle size dispersion.J Phys and antimicrobial activity of copper nanoparticles.Mater Lett, Chem B,2001,105(37):8672 2012,71:114 4]Liu H.Favier F,Ng K,et al.Size-selective electrodeposition of Wei Y,Chen S,Kowalczyk B,et al.Synthesis of stable,low- mesocale metal particles:a general method.Electrochim Acta, dispersity copper nanoparticles and nanorods and their antifungal 2001,47(5):671 and catalytic properties.J Phys Chem C.2010,114 (37): 25] Fransaer J L,Penner R M.Brownian dynamics simulation of the 15612 growth of metal nanocrystal ensembles on electrode surfaces from [8]Raja M,Shuba J,Ali F B.et al.Synthesis of copper nanoparti- solution:I.Instantaneous nucleation and diffusion-controlled cles by electroreduction process.Mater Manuf Processes,2008,23 growth.J Phys Chem B,1999,103(36):7643 (8):782 6]Wang Y H,Chen P L.Liu M H.Synthesis of well-defined cop- 9]Han W K.Choi J W,Hwang G H,et al.Fabrication of Cu nano per nanocubes by a one-pot solution process.Nanotechnology, particles by direet electrochemical reduction from Cu nano parti- 2006,17(24):6000 cles.Appl Surf Sci,2006,252(8):2832 27] Sau T K,Rogach A L.Nonspherical noble metal nanoparticles: [10]HaasI,ShanmugamS,Gedanken A.Pulsed sonoelectrochemical colloid-chemical synthesis and morphology control.Ade Mater, synthesis of size-controlled copper nanoparticles stabilized by poly 2010,22(16),1781 (N-vinylpyrrolidone).J Phys Chem B,2006,110 (34):16947 8]Liu YY,Diao P,Xiang M.Effect of halide ions on the morphology 01] Zhong S,Koch T,Wang M,et al.Nanoscale twinned copper and the electrocatalytic activity of platinum nanoparticles prepared by nanowire formation by direct electrodeposition.Small,2009,5 electrodeposition.Acta Chim Sin,2011,69(11):1301 (20):2265 29]Xue C,Mirkin C A.pH-switchable silver nanoprism growth [12]Koffyberg F P.A photoelectrochemical determination of the pathways.Angew Chem Int Ed,2007,119(12):2082 position of the conduction and valence band edges of p-type Cu0. B0]Jin R,Cao Y W,Mirkin C A,et al.Photoinduced conversion of sil- A4 ppl Phys,1982,53(2):1173 ver nanospheres to nanoprisms.Science,2001,294(5548):1901 [13]Oral A Y.Mensur E,Aslan M H,et al.The preparation of copper B1]Yang S,Zhang T,Zhang L,et al.Morphological transition of (ID oxide thin films and the study of their microstructures and opti- gold nanostructures induced by continuous ultraviolet irradiation. cal properties.Mater Chem Phys,2004,83(1):140 Nanotechnology,2006,17(22):5639 [14]Nakaoka K,Ueyama J,Ogura K.Photoelectrochemical behavior B2]Liu Z Y,Bai H W,Xu S P,et al.Hierarchical Cu0/ZnO of electrodeposited Cuo and Cu2O thin films on conducting "com-ike"architecture for photocatalytic hydrogen generation. substrates.J Electrochem Soc,2004,151 (10):661 Int J Hydrogen Energy,2011,36(21):13473郭 欣等: 铜纳米粒子的电化学制备及其氧化物的光电催化分解水性能 浓度 为 0. 4 mmol·L - 1 ,电 化 学 反 应 的 生 长 电 位 为 - 0. 8 V下沉积晶种,- 0. 1 V 生长 15 min. (2) 制备得到的 Cu 纳米粒子在经过热处理转变 为 CuO 后可以作为光阴极,具有光电催化分解水制氢 的作用. 提出了光电流不断衰减的原因是在较高的过 电位下 CuO 电极本身会被还原. 参 考 文 献 [1] Diao P,Zhang D F,Guo M,et al. Electrocatalytic oxidation of CO on supported gold nanoparticles and submicroparticles: support and size effects in electrochemical systems. J Catal,2007,250 (2): 247 [2] Zhang D,Diao P,Zhang Q. Potential-induced shape evolution of gold nanoparticles prepared on ITO substrate. J Phys Chem C, 2009,113(36): 15796 [3] Gacem N,Diao P. Effect of solvent polarity on the assembly behavior of PVP coated rhodium nanoparticles. Colloids Surf A, 2013,417: 32 [4] Sarkar A,Mukherjee T,Kapoor S. PVP-stabilized copper nanop￾articles: a reusable catalyst for“Click”reaction between terminal alkynes and azides in nonaqueous solvents. J Phys Chem C, 2008,112(9): 3334 [5] Li C W,Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc,2012,134(17): 7231 [6] Ramyadevi J,Jeyasubramanian K,Marikani A,et al. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett, 2012,71: 114 [7] Wei Y,Chen S,Kowalczyk B,et al. Synthesis of stable,low￾dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J Phys Chem C,2010,114 ( 37 ) : 15612 [8] Raja M,Shuba J,Ali F B,et al. Synthesis of copper nanoparti￾cles by electroreduction process. Mater Manuf Processes,2008,23 (8): 782 [9] Han W K,Choi J W,Hwang G H,et al. Fabrication of Cu nano particles by direct electrochemical reduction from CuO nano parti￾cles. Appl Surf Sci,2006,252(8): 2832 [10] Haas I,Shanmugam S,Gedanken A. Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly (N-vinylpyrrolidone). J Phys Chem B,2006,110(34): 16947 [11] Zhong S,Koch T,Wang M,et al. Nanoscale twinned copper nanowire formation by direct electrodeposition. Small,2009,5 (20): 2265 [12] Koffyberg F P. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. Appl Phys,1982,53(2): 1173 [13] Oral A Y,Men爧ur E,Aslan M H,et al. The preparation of copper (Ⅱ) oxide thin films and the study of their microstructures and opti￾cal properties. Mater Chem Phys,2004,83(1): 140 [14] Nakaoka K,Ueyama J,Ogura K. Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates. J Electrochem Soc,2004,151(10): 661 [15] Chiang C Y,Aroh K,Franson N,et al. Copper oxide nanoparti￾cle made by flame spray pyrolysis for photoelectrochemical water splitting: Part Ⅱ. Photoelectrochemical study. Int J Hydrogen Energy,2011,36(24): 15519 [16] Izaki M,Nagai M,Maeda K,et al. Electrodeposition of 1. 4-eV￾bandgap p-copper (Ⅱ) oxide film with excellent photoactivity. J Electrochem Soc,2011,158(9): D578 [17] Chiang C Y,Chang M H,Liu H S,et al. Process intensification in the production of photocatalysts for solar hydrogen generation. Ind Eng Chem Res,2012,51(14): 5207 [18] Chauhan D,Satsangi V R,Dass S,et al. Preparation and char￾acterization of nanostructured CuO thin films for photoelectro￾chemical splitting of water. Bull Mater Sci,2006,29(7): 709 [19] Chiang C Y,Epstein J,Brown A,et al. Biological templates for antireflective current collectors for photoelectrochemical cell ap￾plications. Nano Lett,2012,12(11): 6005 [20] Chiang C Y,Shin Y,Aroh K,et al. Copper oxide photocathodes prepared by a solution based process. Int J Hydrogen Energy, 2012,37(10): 8232 [21] Barreca D,Fornasiero P,asparotto A,et al. The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 pro￾duction. ChemSusChem,2009,2(3): 230 [22] Penner R M. Mesoscopic metal particles and wires by electro￾deposition. J Chem B,2002,106(13): 3339 [23] Penner R M. Brownian dynamics simulations of the growth of metal nanocrystal ensembles on electrode surfaces in solution: 2. The effect of deposition rate on particle size dispersion. J Phys Chem B,2001,105(37): 8672 [24] Liu H,Favier F,Ng K,et al. Size-selective electrodeposition of meso-scale metal particles: a general method. Electrochim Acta, 2001,47(5): 671 [25] Fransaer J L,Penner R M. Brownian dynamics simulation of the growth of metal nanocrystal ensembles on electrode surfaces from solution: Ⅰ. Instantaneous nucleation and diffusion-controlled growth. J Phys Chem B,1999,103(36): 7643 [26] Wang Y H,Chen P L,Liu M H. Synthesis of well-defined cop￾per nanocubes by a one-pot solution process. Nanotechnology, 2006,17(24): 6000 [27] Sau T K,Rogach A L. Nonspherical noble metal nanoparticles: colloid--chemical synthesis and morphology control. Adv Mater, 2010,22(16),1781 [28] Liu Y Y,Diao P,Xiang M. Effect of halide ions on the morphology and the electrocatalytic activity of platinum nanoparticles prepared by electrodeposition. Acta Chim Sin,2011,69(11): 1301 [29] Xue C,Mirkin C A. pH-switchable silver nanoprism growth pathways. Angew Chem Int Ed,2007,119(12): 2082 [30] Jin R,Cao Y W,Mirkin C A,et al. Photoinduced conversion of sil￾ver nanospheres to nanoprisms. Science,2001,294(5548): 1901 [31] Yang S,Zhang T,Zhang L,et al. Morphological transition of gold nanostructures induced by continuous ultraviolet irradiation. Nanotechnology,2006,17(22): 5639 [32] Liu Z Y,Bai H W,Xu S P,et al. Hierarchical CuO/ZnO “corn-like”architecture for photocatalytic hydrogen generation. Int J Hydrogen Energy,2011,36(21): 13473 ·745·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有