正在加载图片...
·84 北京科技大学学报 第34卷 Proceedings of 17th Mediterranean Conference on Control Automa- tion.Thessaloniki,2009:766 Martin JS,Scheid JF,TakahashiT,et al.An initial and bound- ary value problem modeling of fish-ike swimming.Arch Ration Mech Anal,2009,188(3):429 B]Morgansen K A,Duindam V,Mason R J,et al.Nonlinear control methods for planar Carangiform robot fish locomotion//Proceedings of the 2001 IEEE International Conference on Robotics Automa- tion.Seoul,2001:427 4]Wang K,Yu J Z.An embedded vision system for robotic fish navi- gation//Proceedings of International Conference on Computer Appli- 图7单关节机器鱼以最小半径巡游 cation and System Modeling.Taiyuan,2010:333 Fig.7 Cruising s of the single-ink robotic fish with the minimum [5] Chen W S,Xia D,Liu J K.Modular design and realization of a turning radius torpedo-shape robot fish//Proceedings of IEEE International Con- ference on Mechatronics and Automation.Takamatsu,2008:125 器鱼的最小转弯半径基本可以达到最小,从而说明 [6]Yu J Z,Chen EK,Wang S,et al.Research evolution and analysis of 盲目地增加关节数量并不能有效地提高机器鱼的机 biomimetic robot fish.Control Theory Appl,2003,20(4):485 动性,但可以增加巡游的稳定性 (喻俊志,陈尔奎,王硕,等。仿生机器鱼研究的进展与分析 控制理论与应用,2003,20(4):485) 4结论 Mason R M.Burdick J W.Experiments in carangiform robotic fish locomotion//Proceedings of IEEE International Conference on Ro- 经过对BLRF-I系列单关节、两关节和三关节 botics Automation.San Francisco,2000:428 仿生机器鱼的实验研究发现,增加仿生机器鱼摆动 8] Barrett D S,Triantafyllou MS,Yue D K P,et al.Drag reduction 舵机的数量,即增加机器鱼的关节数目和摆动长度, in fish-ike locomotion.J Fluid Mech,1999,392:183 可以有效地提高仿生机器鱼的巡游速度.关节数目 [9]Low K H,Chong C W,Zhou C L.Performance study of a fish ro- bot propelled by a flexible caudal fin//Proceedings of IEEE Inter- 对机器鱼巡游速度的影响可以参照关系方程(3), national Conference on Robotics and Automation Anchorage Conven- 即v=-a(x。-n)2+M.在设计时可以根据需要选 tion District.Anchorage,2010:90 择适当的关节数目.最小转弯半径的实验结果表 1o1 Liu J K,Chen W S,Chen Z L.Experimental study on a two- 明,两关节机器鱼的最小转弯半径相对于单关节机 joint robotic fish.China Mech Eng,2002,13(16):1354 器鱼有极为明显的减小,而三关节机器鱼相对于两 (刘军考,陈维山,陈在礼。仿生机器鱼的运动学参数及实 验研究.中国机械工程,2002,13(16):1354) 关节机器鱼的最小转弯半径几乎没有变化,但是在 01] Zhou C.Cao ZQ.Wang S,et al.The design and path planning 转弯时巡游稳定性增加,所以仿生机器鱼的最小转 of a miniature biomimetic robotic fish.Acta Autom Sin,2008,34 弯半径在关节数量为2时便可以达到最小,继续增 (7):772 加舵机数目,不会继续减小转弯半径的长度,只会提 (周超,曹志强,王硕,等.微小型仿生机器鱼设计与实时路 高转弯巡游时的稳定性 径规划.自动化学报,2008,34(7):772) 2] Sfakiotakis M,Lane D M,Davies J B C.Review of fish swim- 实验过程中,仿生机器鱼在摆动频率达到最高 ming modes for aquatic locomotion.IEEEJOceanic Eng,1999. 时,鱼体出现了明显的左右晃动现象,不能很稳定地 24(2):237 巡游:另外鱼头部分与水接触面积较大,增加了水阻 [13]Lighthill M J.Aquatic animal propulsion of high hydromechanical 力的作用.在以后的研究中会更深入地研究分析鱼 efficiency.J Fluid Mech,1970,44 (2):265 体动力学对机器鱼巡游性能的影响,对鱼体的外形 [14]Liu J D.Hu H S.Biological inspiration:from Carangiform fish to 设计做进一步改进,使得机器鱼在高速巡游时可以 multi-joint robotic fish.J Bionic Eng,2010,7(1):35 [15]Melli J.Rowley C W.Models and control of fish-ike locomo- 稳定地运动,并且尽可能地减小水阻力的作用,提高 tion.Exp Mech,2010,50(9):1355 仿生机器鱼的巡游性能. [16]Anton M,Chen Z,Kruusmaa M,et al.Analytical and computa- tional modeling of robotic fish propelled by soft actuation material- 参考文献 based active joints//Proceeding of the IEEE/RSJ International [Papadopoulos E,Apostolopoulos E,Tsigkourakos P.Design,con- Conference on Intelligent Robots and Systems.St.Louis,2009 trol and experimental performance of a teleoperated robotic fish// 2126北 京 科 技 大 学 学 报 第 34 卷 图 7 单关节机器鱼以最小半径巡游 Fig. 7 Cruising s of the single-link robotic fish with the minimum turning radius 器鱼的最小转弯半径基本可以达到最小,从而说明 盲目地增加关节数量并不能有效地提高机器鱼的机 动性,但可以增加巡游的稳定性. 4 结论 经过对 BLRF--I 系列单关节、两关节和三关节 仿生机器鱼的实验研究发现,增加仿生机器鱼摆动 舵机的数量,即增加机器鱼的关节数目和摆动长度, 可以有效地提高仿生机器鱼的巡游速度. 关节数目 对机器鱼巡游速度的影响可以参照关系方程( 3) , 即 v = - a ( xn - n) 2 + M. 在设计时可以根据需要选 择适当的关节数目. 最小转弯半径的实验结果表 明,两关节机器鱼的最小转弯半径相对于单关节机 器鱼有极为明显的减小,而三关节机器鱼相对于两 关节机器鱼的最小转弯半径几乎没有变化,但是在 转弯时巡游稳定性增加,所以仿生机器鱼的最小转 弯半径在关节数量为 2 时便可以达到最小,继续增 加舵机数目,不会继续减小转弯半径的长度,只会提 高转弯巡游时的稳定性. 实验过程中,仿生机器鱼在摆动频率达到最高 时,鱼体出现了明显的左右晃动现象,不能很稳定地 巡游; 另外鱼头部分与水接触面积较大,增加了水阻 力的作用. 在以后的研究中会更深入地研究分析鱼 体动力学对机器鱼巡游性能的影响,对鱼体的外形 设计做进一步改进,使得机器鱼在高速巡游时可以 稳定地运动,并且尽可能地减小水阻力的作用,提高 仿生机器鱼的巡游性能. 参 考 文 献 [1] Papadopoulos E,Apostolopoulos E,Tsigkourakos P. Design,con￾trol and experimental performance of a teleoperated robotic fish / / Proceedings of 17th Mediterranean Conference on Control & Automa￾tion. Thessaloniki,2009: 766 [2] Martin J S,Scheid J F,Takahashi T,et al. An initial and bound￾ary value problem modeling of fish-like swimming. Arch Ration Mech Anal,2009,188( 3) : 429 [3] Morgansen K A,Duindam V,Mason R J,et al. Nonlinear control methods for planar Carangiform robot fish locomotion / /Proceedings of the 2001 IEEE International Conference on Robotics & Automa￾tion. Seoul,2001: 427 [4] Wang K,Yu J Z. An embedded vision system for robotic fish navi￾gation / /Proceedings of International Conference on Computer Appli￾cation and System Modeling. Taiyuan,2010: 333 [5] Chen W S,Xia D,Liu J K. Modular design and realization of a torpedo-shape robot fish / /Proceedings of IEEE International Con￾ference on Mechatronics and Automation. Takamatsu,2008: 125 [6] Yu J Z,Chen E K,Wang S,et al. Research evolution and analysis of biomimetic robot fish. Control Theory Appl,2003,20( 4) : 485 ( 喻俊志,陈尔奎,王硕,等. 仿生机器鱼研究的进展与分析. 控制理论与应用,2003,20( 4) : 485) [7] Mason R M,Burdick J W. Experiments in carangiform robotic fish locomotion / /Proceedings of IEEE International Conference on Ro￾botics & Automation. San Francisco,2000: 428 [8] Barrett D S,Triantafyllou M S,Yue D K P,et al. Drag reduction in fish-like locomotion. J Fluid Mech,1999,392: 183 [9] Low K H,Chong C W,Zhou C L. Performance study of a fish ro￾bot propelled by a flexible caudal fin / /Proceedings of IEEE Inter￾national Conference on Robotics and Automation Anchorage Conven￾tion District. Anchorage,2010: 90 [10] Liu J K,Chen W S,Chen Z L. Experimental study on a two￾joint robotic fish. China Mech Eng,2002,13( 16) : 1354 ( 刘军考,陈维山,陈在礼. 仿生机器鱼的运动学参数及实 验研究. 中国机械工程,2002,13( 16) : 1354) [11] Zhou C,Cao Z Q,Wang S,et al. The design and path planning of a miniature biomimetic robotic fish. Acta Autom Sin,2008,34 ( 7) : 772 ( 周超,曹志强,王硕,等. 微小型仿生机器鱼设计与实时路 径规划. 自动化学报,2008,34( 7) : 772) [12] Sfakiotakis M,Lane D M,Davies J B C. Review of fish swim￾ming modes for aquatic locomotion. IEEE J Oceanic Eng,1999, 24( 2) : 237 [13] Lighthill M J. Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech,1970,44( 2) : 265 [14] Liu J D,Hu H S. Biological inspiration: from Carangiform fish to multi-joint robotic fish. J Bionic Eng,2010,7( 1) : 35 [15] Melli J,Rowley C W. Models and control of fish-like locomo￾tion. Exp Mech,2010,50( 9) : 1355 [16] Anton M,Chen Z,Kruusmaa M,et al. Analytical and computa￾tional modeling of robotic fish propelled by soft actuation material￾based active joints/ /Proceeding of the IEEE /RSJ International Conference on Intelligent Robots and Systems. St. Louis,2009: 2126 ·84·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有