正在加载图片...
工程科学学报,第41卷,第8期:1045-1051,2019年8月 Chinese Joural of Engineering,Vol.41,No.8:1045-1051,August 2019 DOI:10.13374/j.issn2095-9389.2019.08.010;http://journals.ustb.edu.cn Fe-TiB,/AL,O,复合阴极的电解性能及元素迁移行为 梁玉冬12),王力军2)四,柴登鹏),牛婷婷),包生重),王俊伟),刘英) 1)中国铝业郑州有色金属研究院有限公司,郑州4500412)北京有色金属研究总院稀有金属冶金材料研究所,北京100088 区通信作者,E-mail:gold@ginm.com 摘要以氧化铝溶胶为黏结剂、金属Fe为烧结助剂,采用冷压-烧结制备出铝电解用F-TB2/AL,O,复合阴极材料,利用20 A电解试验研究其电解性能:利用能谱仪(EDS)对电解试验前后的复合阴极材料进行了成分物相分析,研究电解过程中各种 元素迁移行为.研究结果表明:金属F作为烧结助剂在烧结过程中能有效的填充骨料之间的空隙,使该复合阴极材料的烧结 致密度显著提高:20A电解试验过程电压稳定,电流效率93.2%,原铝中铝元素质量分数为99.47%,杂质元素质量分数为 0.53%.在电解试验后,铝液能有效润湿阴极表面,表明F-TB,/AL,O,复合阴极材料具有较理想的可润湿性:从复合阴极电 解后的能谱分析可知,在电解过程中,碱金属主要是通过液态电解质渗透进入阴极材料中,随后又逐渐渗透进入黏结剂相中, 并在骨料之间氧化铝溶胶和金属烧结助剂均未能充分填充的空隙进行富集.K元素较N元素对黏结相的渗透力更强:与此 同时,阴极表面生成的A!通过复合材料的空隙进入阴极内部,而F金属会利用材料内部的空隙反向扩散至铝液层中.在试 验中,阴极表面的铝液层的稳定存在是该阴极高效稳定运行的基础. 关键词TB,复合材料:铝电解:可润湿性阴极:氧化铝溶胶:烧结:元素迁移 分类号TF821 Electrolytic properties and element migration behavior in a Fe-TiB,/Al,O,composite cathode LIANG Yu-dong,WANG Li-jun,CHAI Deng-peng,NIU Ting-ting,BAO Sheng-zhong,WANG Jun-wei,LIU Ying 1)Zhengzhou Non-ferrous Metals ResearchInstitute Co.Ltd of CHALCO,Zhengzhou 450041,China 2)Rare Metals Metallurgy Materials Research Institute,General Research Institute for Nonferrous Metals,Beijing 100088,China Corresponding author,E-mail:gold@grinm.com ABSTRACT Wettable cathodes are a very important part of the non-carbon electrolysis process.This study prepared Fe-TiB,/AlO composite cathode materials by cold pressing and sintering using alumina sol as a binder and metal Fe as a sintering agent for aluminum electrolysis.The electrolytic performance of aluminum electrolysis was studied using a 20 A electrolysis test,and the composite cathode materials before and after the test were analyzed via EDS.The migration behavior of various elements in the electrolysis process was studied by composition analysis.The results show that Fe metal can effectively fill the gap between the aggregates during the sintering process.Hence,the sintering density of the composite cathode material can be significantly improved.In the 20A electrolysis test,the voltage is stable,the current efficiency is 93.2%,the original aluminum quality is 99.47%,and the impurity in the aluminum liquid is 0.53%.After the electrolysis test,the aluminum liquid can moisten the cathode surface effectively.Therefore,the Fe-TiB/Al2O composite is an ideal wettable cathode material.Based on the EDS analysis of the composite cathode electrolysis,the alkali metal in the liquid electrolyte permeates into the cathode material during the electrolysis process.Subsequently,alkali metals gradually penetrate in- to the binder phase and fill the voids that are not completely filled by alumina sol or metal sintering additives.As the electrolysis pro- ceeds,the penetration depth of the element K is greater than that of Na.The Al generated at the cathode surface also enters the cathode 收稿日期:2018-07-16 基金项目:中国铝业股份有限公司重大科技计划专项资助项目(ZB2013CBBC1)工程科学学报,第 41 卷,第 8 期:1045鄄鄄1051,2019 年 8 月 Chinese Journal of Engineering, Vol. 41, No. 8: 1045鄄鄄1051, August 2019 DOI: 10. 13374 / j. issn2095鄄鄄9389. 2019. 08. 010; http: / / journals. ustb. edu. cn Fe鄄鄄 TiB2 / Al 2 O3 复合阴极的电解性能及元素迁移行为 梁玉冬1,2) , 王力军2) 苣 , 柴登鹏1) , 牛婷婷1) , 包生重1) , 王俊伟1) , 刘 英1) 1)中国铝业郑州有色金属研究院有限公司, 郑州 450041 2) 北京有色金属研究总院稀有金属冶金材料研究所, 北京 100088 苣通信作者, E鄄mail:gold@ grinm. com 摘 要 以氧化铝溶胶为黏结剂、金属 Fe 为烧结助剂,采用冷压鄄鄄烧结制备出铝电解用 Fe鄄鄄TiB2 / Al 2O3复合阴极材料,利用 20 A 电解试验研究其电解性能;利用能谱仪(EDS)对电解试验前后的复合阴极材料进行了成分物相分析,研究电解过程中各种 元素迁移行为. 研究结果表明:金属 Fe 作为烧结助剂在烧结过程中能有效的填充骨料之间的空隙,使该复合阴极材料的烧结 致密度显著提高;20 A 电解试验过程电压稳定,电流效率 93郾 2% ,原铝中铝元素质量分数为 99郾 47% ,杂质元素质量分数为 0郾 53% . 在电解试验后,铝液能有效润湿阴极表面,表明 Fe鄄鄄TiB2 / Al 2O3复合阴极材料具有较理想的可润湿性;从复合阴极电 解后的能谱分析可知,在电解过程中,碱金属主要是通过液态电解质渗透进入阴极材料中,随后又逐渐渗透进入黏结剂相中, 并在骨料之间氧化铝溶胶和金属烧结助剂均未能充分填充的空隙进行富集. K 元素较 Na 元素对黏结相的渗透力更强;与此 同时,阴极表面生成的 Al 通过复合材料的空隙进入阴极内部,而 Fe 金属会利用材料内部的空隙反向扩散至铝液层中. 在试 验中,阴极表面的铝液层的稳定存在是该阴极高效稳定运行的基础. 关键词 TiB2复合材料; 铝电解; 可润湿性阴极; 氧化铝溶胶; 烧结; 元素迁移 分类号 TF821 收稿日期: 2018鄄鄄07鄄鄄16 基金项目: 中国铝业股份有限公司重大科技计划专项资助项目(ZB2013CBBCe1) Electrolytic properties and element migration behavior in a Fe鄄鄄 TiB2 / Al 2O3 composite cathode LIANG Yu鄄dong 1,2) , WANG Li鄄jun 2) 苣 , CHAI Deng鄄peng 1) , NIU Ting鄄ting 1) , BAO Sheng鄄zhong 1) , WANG Jun鄄wei 1) , LIU Ying 1) 1) Zhengzhou Non鄄ferrous Metals ResearchInstitute Co. Ltd of CHALCO, Zhengzhou 450041, China 2) Rare Metals & Metallurgy Materials Research Institute, General Research Institute for Nonferrous Metals, Beijing 100088, China 苣Corresponding author, E鄄mail: gold@ grinm. com ABSTRACT Wettable cathodes are a very important part of the non鄄carbon electrolysis process. This study prepared Fe鄄鄄TiB2 / Al 2O3 composite cathode materials by cold pressing and sintering using alumina sol as a binder and metal Fe as a sintering agent for aluminum electrolysis. The electrolytic performance of aluminum electrolysis was studied using a 20 A electrolysis test, and the composite cathode materials before and after the test were analyzed via EDS. The migration behavior of various elements in the electrolysis process was studied by composition analysis. The results show that Fe metal can effectively fill the gap between the aggregates during the sintering process. Hence, the sintering density of the composite cathode material can be significantly improved. In the 20 A electrolysis test, the voltage is stable, the current efficiency is 93郾 2% , the original aluminum quality is 99郾 47% , and the impurity in the aluminum liquid is 0郾 53% . After the electrolysis test, the aluminum liquid can moisten the cathode surface effectively. Therefore, the Fe鄄鄄TiB2 / Al 2O3 composite is an ideal wettable cathode material. Based on the EDS analysis of the composite cathode electrolysis, the alkali metal in the liquid electrolyte permeates into the cathode material during the electrolysis process. Subsequently, alkali metals gradually penetrate in鄄 to the binder phase and fill the voids that are not completely filled by alumina sol or metal sintering additives. As the electrolysis pro鄄 ceeds, the penetration depth of the element K is greater than that of Na. The Al generated at the cathode surface also enters the cathode
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有