正在加载图片...
第二十一讲球函数 第3页 称为m阶l次连带 Legendre函数 连带 Legendre函数,也是作为本征值问题的解、即连带 Legendre方程在有界条件下的本征函 数引入的,因此,连带 Legendre函数也应当具有正交性:相同阶但不同次的连带 Legendre函数 在区间-1,1上正交 PT(x)Pk(x)dx=0,k≠ 这里注意的是,对于连带 Legendre方程来说,m是固定的已知参数,因此,在上面的 正交关糸中,连带 Legendre函数的阶数m必须是相同的 可以从方程出发,并应用有界条件,来证明正交关糸.这是证明本征函数正交性的标准 方法 下面换一个做法,采用和证明 Legendre多项式的正交性类似的办法 证由于k≠l,不妨假设k<l.于是,代入连带 Legendre函数的定义,并分部积分,即得 P()P(a)dr dmPk(a)dmPl(a) drm drm dmPk(r)- Pi(a 分部积分一次的结果除了在积分号前增加一个负号外,就只不过是将被积函数中P(x)的微商转 移一次到其余的因子上.可以预料,在分部积分m次后,就应当得到 P(a)PK (a)dr()m/m(1-r2) d"P(E P(z)dr 注意上式右方的被积函数是l次 Legendre多项式和另一个多项式 的乘积.容易求出这个多项式的次数为k-m+2m-m=k,由于k<l,立即就证得连带 Legendre 函数的正交性.口 作变换x=cosθ,还可以得到连带 Legendre函数正交性的另一种表达形式,即 Pl(cos O)Pk(cos 0)sin 0de=0, h+L 注意,这里出现了正交权重sin 完全模仿前面的做法,还能求得连带 Legendre函数的模方.这只要在以上证明过程的各式中Wu Chong-shi ➫➭➯➲➳ ➵ ♣ q (➸) r 3 s ➺■ m ➎ l ❥ ✲✳ Legendre ❽ ❵✢ ✲✳ Legendre ❽ ❵ ❂ ❇ ❄➻■ ❺❻❼➼①✺▼➽↔ ✲✳ Legendre ✴✵✶⑩❶❷❸⑧✺ ❺❻❽ ❵➾❚✺ ❂ ➚➪❂ ✲✳ Legendre ❽ ❵❇➶➹➘⑩ ❈➴✻➷ ➬➮➱✃❐➮❒❮❰Ï Legendre ÐÑ ➀ÒÓ [−1, 1] ÔÕÖ ❂ Z 1 −1 P m l (x)Pm k (x)dx = 0, k 6= l. ×ØÙÚ✛ ✤❂ÛÜ✑✒ Legendre ✓✔ÝÞ❂ m ✤ ßà✛ áâãä❂åæ❂✕ç è✛ éê ✬✭ë❂ ✑✒ Legendre ìä✛íä m îï✤ð ñ✛✢ ò óô✓✔ ★õ❂ö÷ø✖✗✘✙❂Ýù úéê ✬✭✢× ✤ù ú✌ûìäéêü✛ýþ ✓✣✢ ✚ èÿ￾✁✂✣❂✄ ø ✩ù ú Legendre ☎✆✝✛éêü ✞✟✛✠ ✣✢ ✡ ➜ ② k 6= l ❂ ☛☞✌t k < l ✢② ❄❂❙❚✲✳ Legendre ❽ ❵✺ ❭✍❂ ✎✰✏✑✰ ❂↔ ❱ Z 1 −1 P m l (x)Pm k (x)dx = Z 1 −1 ￾ 1 − x 2 m d mPk(x) dxm d mPl(x) dxm dx = ￾ 1 − x 2 m d mPk(x) dxm d m−1Pl(x) dxm−1 1 −1 − Z 1 −1 d dx  ￾ 1 − x 2 m d mPk(x) dxm  d m−1Pl(x) dxm−1 dx = − Z 1 −1 d dx  ￾ 1 − x 2 m d mPk(x) dxm  d m−1Pl(x) dxm−1 dx. ✰✏✑✰ ❀❥✺➡✒✓➑✶✑✰✔✕✖✗❀✘ ➙✔✙❂❯➊☛❣ ❄ ➨✚✑ ❽ ❵ ⑦ Pl(x) ✺ ❤✐✛ ✜ ❀❥❲⑥✢✺➚✣➢✢◆❍✤✥❂ ✶✰✏✑✰ m ❥✦❂❯➶➹❱❲ Z 1 −1 P m l (x)Pm k (x)dx = (−) m Z 1 −1 d m dxm  ￾ 1 − x 2 m d mPk(x) dxm  Pl(x)dx. ✧★➢❘✩ ✴ ✺✚✑ ❽ ❵ ❄ l ❥ Legendre →➣❘✽✪ ❀✘ →➣❘ d m dxm  ￾ 1 − x 2 m d mPk(x) dxm  ✺✫✑✢✬✭➈ ❹ ❏ ✘ →➣❘✺❥ ❵■ k − m+ 2m− m = k ✢ ➜ ② k < l ❂ ✉ ↔❯❡❱✲✳ Legendre ❽ ❵✺ ❈➴✻✢ ➻✮✯ x = cos θ ❂ ➐◆❍❱❲✲✳ Legendre ❽ ❵ ❈➴✻✺✪ ❀✰✱✲◗❘❂↔ Z π 0 P m l (cos θ)Pm k (cos θ) sin θdθ = 0, k 6= l. ✧★❂ ❏✳ ❹➝➑ ❈➴✴✵ sin θ ✢ ✾✿✶✷✕⑨✺✸❞ ❂ ➐➓➈❱✲✳ Legendre ❽ ❵✺ ✶✴✢❏ ➊ ➇✶❍➢❡ ▲❣ ✵ ✺✹❘ ⑦
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有