Bn=0x名+1xgg Cov(XY)=E(XY)-E(X)E(Y) 0×0×36 +0x1 1x0×36 25 +1×1 36 3666 所以Pg=0 (2)联合分布律为 1 p 45 10 66 66 6 10 66 6 P. 1 6 45+1x0 +01x+1x66 11 E(XY)=0×0 6 66 66 Cov(X)=E(XY)-E(X)EY)=x 6666396 6 5 Cov(XY) 396 1 Px=- DVD元55=-0.091 V36V36 例7设连续型随机变量(X,Y)的概率密度为 12y2 f(x,y)= 0≤y≤x≤1 0 其它 求pg 解)=fx,y)d= 012yd=4x20≤x≤1 0 其它 B-x4x=号5 1 1 ( ) 0 1 6 6 6 E Y = + = Cov XY E XY E X E Y ( ) ( ) ( ) ( = − ) 25 5 5 1 1 1 0 0 1 0 0 1 1 1 0 36 36 36 36 6 6 = + + + - = 所以 0 XY = (2) 联合分布律为 Y X 0 1 j p 0 45 66 10 66 5 6 1 10 66 1 66 1 6 i p 5 6 1 6 1 ( ) 6 E X = 1 ( ) 6 E Y = 45 10 10 1 1 ( ) 0 0 1 0 0 1 1 1 66 66 66 66 66 E XY = + + + = 1 1 5 ( ) ( ) ( ) ( 6 6 396 Cov XY E XY E X E Y = − − = − 1 )= 66 2 2 1 1 ( ) 1 6 6 E X + = 2 5 =0 6 2 1 ( ) 6 E Y = 所以 1 1 5 2 ( ) ( ) 6 6 36 D X = − = 5 ( ) 36 D Y = 5 ( ) 1 396 0.091 ( ) ( ) 5 5 11 36 36 XY Cov XY D X D Y − = = = − = − 例7 设连续型随机变量 (X Y, ) 的概率密度为 2 12 0 1 ( ) 0 y y x f x y = , 其它 ,求 XY 。 解 2 3 0 12 4 0 1 ( ) ( , ) 0 x x y dy x x f x f x y dy + − = = = 其它 1 3 0 4 ( ) 4 5 E x x x dx = =