正在加载图片...
赵展等:K424高温合金凝固特征及冷却速度对其影响规律 .1341· 裂敏感性影响较大,从合金凝固行为方面考虑,为保 superalloy Udimet 720Li.J Alloys Compd,2015,653:266 证合金性能,应调整冷却速率,以不产生粗大的共晶 [8]Gong L,Chen B,Du Z H,et al.Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G.J 组织为宜 Mater Sci Technol,2018,34(3):541 [9] Seo S M,Jeong H W,Ahn Y K,et al.A comparative study of 4结论 quantitative microsegregation analyses performed during the solidi- (1)K424合金的凝固顺序为:1345℃,y相从液 fication of the Ni-base superalloy CMSX-10.Mater Charact, 2014,89:43 相中析出:1308℃,发生L→L+y+MC相变,MC碳 [10]Wang L H,Liu Z L,Liu X Q,et al.Effect of Al and Ti contents 化物开始从液相中析出:约1260℃,在非平衡凝固 on the microstructure and solidification behavior of cast Inconel 条件下,发生L→L+(y+y)相变,凝固末期共晶从 718.JMater Sci Eng,2016,34(2):242 (王立红,刘子利,刘希琴,等.Al,Ti含量对Incone718合 残余液相中析出:1237℃,凝固结束. 金铸造组织和凝固行为的影响.材料科学与工程学报, (2)K424共晶组织的产生主要源于非平衡凝 2016,34(2):242) 固导致的合金元素偏析,粗大的共晶组织的形成与 [11]Zheng L,Xiao C B,Tang DZ,et al.Investigation of the solidi- fication behaviour of a high Cr content cast Ni-base superalloy A/Ti(质量比)密切相关;A/Ti越小,越容易形成粗 K4648.Rare Metal Mat Eng,2008,37(9):1539 大的共晶 (郑亮,肖程波,唐定中,等.高C铸造镍基高温合金 (3)冷却速度对K424合金的共晶组织及碳化物 K4648凝固行为的研究.稀有金属材料与工程,2008,37 有显著影响.在近平衡的慢冷速条件下,枝晶粗大, (9):1539) [12]Shi Z X,Dong JX,Zhang M C.et al.Solidification characteris- 枝晶间隙也较大,但是由于元素扩散充分,共晶和碳 tics and segregation behavior of Ni-based superalloy K418 for auto 化物尺寸都较小:随着冷却速率提高,枝晶细化,元素 turbocharger turbine.JAlloys Compd,2013,571:168 偏析严重,导致共品数量及尺寸急剧上升:当冷却速 [13]Sun X F,Yin F S,Li JG,et al.Solidification behavior of a cast nickel-based superalloy.Acta Metall Sinica,2003,39(1):27 率极高时,枝晶极其细小,枝品间隙也较小,共品数量 (孙晓峰,殷凤仕,李金国,等.一种铸造镍基高温合金的凝 及尺寸明显减小,此时碳化物呈现颗粒状. 固行为.金属学报,2003,39(1):27) (4)冷却速度对K424合金的y'相也有着显著 [14]Mostafaei M,AbbasiS M.Solutioning and solidification process 影响.在近平衡的慢冷速条件下,由于保温时间较 control in Ta-modified CM247 LC superalloy.J Mater Process Technol,2016,231:113 长,Y'相形貌不规则且尺寸较大:随着冷却速率提 [15]Shi ZX,Dong JX,Zhang MC.et al.Solidification characteris- 高,Y相转变为较为规则的立方体型;当冷却速率极 tic and hot tearing susceptibility of Ni-based superalloys for turbo- 高时,y'相转变为球形,尺寸减小至60m左右. charger turbine wheel.Trans Nonferrous Met Soc China,2014, 24(9):2737 参考文献 [16]Zhao Z,Dong J X,Zhang M C,et al.Microstructure and sus- ceptibility to hot tearing of K424 nickel-based superalloys for tur- [1]Academic Committee of the Superalloys,CSM.China Superalloys bocharger turbine wheels.Chin Eng,2016,38(10):1429 Handbook.Beijing:Standards Press of China,2012 (赵展,董建新,张麦仓,等.增压涡轮用K424高温合金组 (中国金属学会高温材料分会.中国高温合金手册(下卷), 织特征及热裂倾向性.工程科学学报,2016,38(10):1429) 北京:中国标准出版社,2012) [17]Heckl A,Rettig R,Cenaovic S,et al.Investigation of the final [2]Zhang J,Huang T W,Liu L,et al Advances in solidification char stages of solidification and eutectic phase formation in Re and Ru acteristics and typical casting defects in nickel-based single crystal containing nickel-base superalloys.Cryst Growth,2010,312 superalloys.Acta Metall Sinica,2015,51(10):1163 (14):2137 (张军,黄太文,刘林,等.单品高温合金凝固特性与典型凝 [18]Zhang Y J.Huang Y J,Yang L,et al.Evolution of microstruc- 固缺陷研究.金属学报,2015,51(10):1163) tures at a wide range of solidification cooling rate in Ni-based su- [3] D'Souza N,Kantor B.West G D,et al.Key aspects of carbide peralloy.J Alloys Compd,2013,570:70 precipitation during solidification in Ni superalloy,MAR MO2.J [19]Liang Y J,Li J,Li A,et al.Solidification path of single-crystal Alloys Compd,2017,702:6 nickel-base superalloys with minor carbon additions under laser rapid [4]Wang H F,Su H J,Zhang J,et al.Investigation on solidification directional solidification conditions.Ser Mater,2017,127:58 path of Ni-based single crystal superalloys with different Ru con- [20]Yang W,Xia W,Xu Z F,et al.Microstructure evolution of tents.Mater Charaet,2017,130:211 K424 superalloy during near-equilibrium and sub-rapid solidifica- [5]Temner M,Yoon H Y,Hong H U,et al.Clear path to the diree- tion processes.Rare Metal Mat Eng,2016,45(1):117 tional solidification of Ni-based superalloy CMSX-10:a peritectic (杨伟,夏卫,徐志峰,等.近平衡与亚快速凝固条件下 reaction.Mater Charact,2015,105:56 K424高温合金的组织演化规律。稀有金属材料与工程, [6] Wang F.Ma D,Zhang J,et al.Solidification behavior of a Ni- 2016,45(1):117) based single crystal CMSX-4 superalloy solidified by downward di- [21]Souza N D,Dong H B.Solidification path in third-generation Ni- rectional solidification process.Mater Charact,2015,101:20 based superalloys,with an emphasis on last stage solidification. [7]Chang LT,Jin H,Sun W R.Solidification behavior of Ni-base Ser Mater,2007,56(1):41赵 展等: K424 高温合金凝固特征及冷却速度对其影响规律 裂敏感性影响较大,从合金凝固行为方面考虑,为保 证合金性能,应调整冷却速率,以不产生粗大的共晶 组织为宜. 4 结论 (1)K424 合金的凝固顺序为:1345 益 ,酌 相从液 相中析出;1308 益 ,发生 L寅L + 酌 + MC 相变,MC 碳 化物开始从液相中析出;约 1260 益 ,在非平衡凝固 条件下,发生 L寅L + (酌 + 酌忆)相变,凝固末期共晶从 残余液相中析出;1237 益 ,凝固结束. (2)K424 共晶组织的产生主要源于非平衡凝 固导致的合金元素偏析,粗大的共晶组织的形成与 Al / Ti(质量比)密切相关;Al / Ti 越小,越容易形成粗 大的共晶. (3)冷却速度对 K424 合金的共晶组织及碳化物 有显著影响. 在近平衡的慢冷速条件下,枝晶粗大, 枝晶间隙也较大,但是由于元素扩散充分,共晶和碳 化物尺寸都较小;随着冷却速率提高,枝晶细化,元素 偏析严重,导致共晶数量及尺寸急剧上升;当冷却速 率极高时,枝晶极其细小,枝晶间隙也较小,共晶数量 及尺寸明显减小,此时碳化物呈现颗粒状. (4)冷却速度对 K424 合金的 酌忆相也有着显著 影响. 在近平衡的慢冷速条件下,由于保温时间较 长,酌忆相形貌不规则且尺寸较大;随着冷却速率提 高,酌忆相转变为较为规则的立方体型;当冷却速率极 高时,酌忆相转变为球形,尺寸减小至 60 nm 左右. 参 考 文 献 [1] Academic Committee of the Superalloys, CSM. China Superalloys Handbook. Beijing: Standards Press of China, 2012 (中国金属学会高温材料分会. 中国高温合金手册(下卷). 北京: 中国标准出版社, 2012) [2] Zhang J, Huang T W, Liu L, et al Advances in solidification char鄄 acteristics and typical casting defects in nickel鄄based single crystal superalloys. Acta Metall Sinica, 2015, 51(10): 1163 (张军, 黄太文, 刘林, 等. 单晶高温合金凝固特性与典型凝 固缺陷研究. 金属学报, 2015, 51(10): 1163) [3] D蒺Souza N, Kantor B, West G D, et al. Key aspects of carbide precipitation during solidification in Ni superalloy, MAR M002. J Alloys Compd, 2017, 702: 6 [4] Wang H F, Su H J, Zhang J, et al. Investigation on solidification path of Ni鄄based single crystal superalloys with different Ru con鄄 tents. Mater Charact, 2017, 130: 211 [5] Terner M, Yoon H Y, Hong H U, et al. Clear path to the direc鄄 tional solidification of Ni鄄based superalloy CMSX鄄10: a peritectic reaction. Mater Charact, 2015, 105: 56 [6] Wang F, Ma D, Zhang J, et al. Solidification behavior of a Ni鄄 based single crystal CMSX鄄4 superalloy solidified by downward di鄄 rectional solidification process. Mater Charact, 2015, 101: 20 [7] Chang L T, Jin H, Sun W R. Solidification behavior of Ni鄄base superalloy Udimet 720Li. J Alloys Compd, 2015, 653: 266 [8] Gong L, Chen B, Du Z H, et al. Investigation of solidification and segregation characteristics of cast Ni鄄base superalloy K417G. J Mater Sci Technol, 2018, 34(3): 541 [9] Seo S M, Jeong H W, Ahn Y K, et al. A comparative study of quantitative microsegregation analyses performed during the solidi鄄 fication of the Ni鄄base superalloy CMSX鄄10. Mater Charact, 2014, 89: 43 [10] Wang L H, Liu Z L, Liu X Q, et al. Effect of Al and Ti contents on the microstructure and solidification behavior of cast Inconel 718. J Mater Sci Eng, 2016, 34(2): 242 (王立红, 刘子利, 刘希琴, 等. Al、Ti 含量对 Inconel718 合 金铸造组织和凝固行为的影响. 材料科学与工程学报, 2016, 34(2): 242) [11] Zheng L, Xiao C B, Tang D Z, et al. Investigation of the solidi鄄 fication behaviour of a high Cr content cast Ni鄄base superalloy K4648. Rare Metal Mat Eng, 2008, 37(9): 1539 (郑亮, 肖程波, 唐定 中, 等. 高 Cr 铸 造 镍 基 高 温 合 金 K4648 凝固行为的研究. 稀有金属材料与工程, 2008, 37 (9): 1539) [12] Shi Z X, Dong J X, Zhang M C, et al. Solidification characteris鄄 tics and segregation behavior of Ni鄄based superalloy K418 for auto turbocharger turbine. J Alloys Compd, 2013, 571:168 [13] Sun X F, Yin F S, Li J G, et al. Solidification behavior of a cast nickel鄄based superalloy. Acta Metall Sinica, 2003, 39(1): 27 (孙晓峰, 殷凤仕, 李金国, 等. 一种铸造镍基高温合金的凝 固行为. 金属学报, 2003, 39(1): 27) [14] Mostafaei M, Abbasi S M. Solutioning and solidification process control in Ta鄄modified CM247 LC superalloy. J Mater Process Technol, 2016, 231: 113 [15] Shi Z X, Dong J X, Zhang M C, et al. Solidification characteris鄄 tic and hot tearing susceptibility of Ni鄄based superalloys for turbo鄄 charger turbine wheel. Trans Nonferrous Met Soc China, 2014, 24(9): 2737 [16] Zhao Z, Dong J X, Zhang M C, et al. Microstructure and sus鄄 ceptibility to hot tearing of K424 nickel鄄based superalloys for tur鄄 bocharger turbine wheels. Chin J Eng, 2016, 38(10): 1429 (赵展, 董建新, 张麦仓, 等. 增压涡轮用 K424 高温合金组 织特征及热裂倾向性. 工程科学学报, 2016, 38(10): 1429) [17] Heckl A, Rettig R, Cenaovic S, et al. Investigation of the final stages of solidification and eutectic phase formation in Re and Ru containing nickel鄄base superalloys. J Cryst Growth, 2010, 312 (14): 2137 [18] Zhang Y J, Huang Y J, Yang L, et al. Evolution of microstruc鄄 tures at a wide range of solidification cooling rate in Ni鄄based su鄄 peralloy. J Alloys Compd, 2013, 570: 70 [19] Liang Y J, Li J, Li A, et al. Solidification path of single鄄crystal nickel鄄base superalloys with minor carbon additions under laser rapid directional solidification conditions. Scr Mater, 2017, 127: 58 [20] Yang W, Xia W, Xu Z F, et al. Microstructure evolution of K424 superalloy during near鄄equilibrium and sub鄄rapid solidifica鄄 tion processes. Rare Metal Mat Eng, 2016, 45(1): 117 (杨伟, 夏卫, 徐志峰, 等. 近平衡与亚快速凝固条件下 K424 高温合金的组织演化规律. 稀有金属材料与工程, 2016, 45(1): 117) [21] Souza N D, Dong H B. Solidification path in third鄄generation Ni鄄 based superalloys, with an emphasis on last stage solidification. Scr Mater, 2007, 56(1): 41 ·1341·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有