.742 工程科学学报,第43卷.第6期 [6]Lazzara G,Cavallaro G,Panchal A,et al.An assembly of organic- CoaL,2019,129:357 inorganic composites using halloysite clay nanotubes.Curr Opin [20]Cavallaro G,Milioto S,Lazzara G.Halloysite nanotubes: Colloid Interface Sci,2018,35:42 interfacial properties and applications in cultural heritage. [7]Shamsi M H,Lugman M,Basarir F,et al.Plasma-modified Langmuir,2020,36(14):3677 halloysite nanocomposites:effect of plasma modification on the [21]Zeng G Y.He Y,Zhan Y Q.et al.Preparation of a novel structure and dynamic mechanical properties of halloysite- poly(vinylidene fluoride)ultrafiltration membrane by incorpora- polystyrene nanocomposites.Polym Int,2010,59(11):1492 tion of 3-aminopropyltriethoxysilane-grafted halloysite nanotubes [8] Zhou S H,Chuan X Y.Synthesis of mesoporous carbon using for oil/water separation.Ind Eng Chem Res,2016,55(6):1760 halloyiste as template.JInorg Mater,2014,29(6):584 [22]Gao X B,Tang F,Jin Z X.Pt-Cu bimetallic nanoparticles loaded (周述慧,传秀云.埃洛石为模板合成中孔炭.无机材料学报 in the lumen of halloysite nanotubes.Langmuir,2019,35(45): 2014,29(6):584) 14651 [9]Chen M Q,Chen Y,Shu Z,et al.Template-free synthesis of [23]Lvov Y,Wang W C,Zhang L Q,et al.Halloysite clay nanotubes mesoporous silica with high specific surface area from natural for loading and sustained release of functional compounds.Adv halloysite and its application in methylene blue adsorption./Inorg Maer,2016,28(6):1227 Maer,2018,33(12):1365 [24]Yah W O.Takahara A.Lvov Y M.Selective modification of (陈孟秋,陈云,舒杼,等,埃洛石原料无模板法制备高比表面积 halloysite lumen with octadecylphosphonic acid:new inorganic 介孔氧化硅及其在亚甲基蓝吸附中的应用.无机材料学报, tubular micelle.J Am Chem Soc,2012,134(3):1853 2018,33(12):1365) [25]Vergaro V,Abdullayev E,Lvov Y M,et al.Cytocompatibility and [10]Feng K Y,Hung G Y,Liu J S,et al.Fabrication of high uptake of halloysite clay nanotubes.Biomacromolecules,2010, performance superhydrophobic coatings by spray-coating of 11(3):820 polysiloxane modified halloysite nanotubes.Chem Eng,2018, [26]Hanif M,Jabbar F,Sharif S,et al.Halloysite nanotubes as a new 331:744 drug-delivery system:a review.Clay Miner,2016,51(3):469 [11]Cavallaro G,Lazzara G,Milioto S,et al.Halloysite nanotubes for [27]Owoseni O,Zhang Y H,Su Y,et al et al.Tuning the wettability of cleaning,consolidation and protection.Chem Record,2018,18(7 halloysite clay nanotubes by surface carbonization for optimal 8):940 emulsion stabilization.Langmuir,2015,31(51):13700 [12]Torres-Luna J A,Moreno S,Molina R,et al.Comparison of the [28]Du M L,Guo B C,Jia D M.Newly emerging applications of catalytic performance of Ni,Mo,and Ni-Mo impregnated on acid halloysite nanotubes:a review.Polym Int,2010,59(5):574 halloysite nanotubes in the n-decane hydroconversion.Energy [29]Massaro M,Colletti C G,Lazzara G,et al.Halloysite nanotubes as Fes,2019.33(12):12647 support for metal-based catalysts.J Mater ChemA,2017,5(26): [13]Wu F,Pickett K,Panchal A,et al.Superhydrophobic polyurethane 13276 foam coated with polysiloxane-modified clay nanotubes for [30]Feng Y N,Zhou X P,Yang J H,et al.Encapsulation of ammonia efficient and recyclable oil absorption.ACS Appl Mater Interfaces borane in Pd/halloysite nanotubes for efficient thermal 2019,11(28):25445 dehydrogenation.ACS Sustainable Chem Eng,2020,8(5):2122 [14]Li Y G,Quan X J,Hu C Y,et al.Effective catalytic reduction of 4- [31]Massaro M,Cavallaro G,Colletti C G,et al.Chemical nitrophenol to 4-aminophenol over etched halloysite nanotubes@ modification of halloysite nanotubes for controlled loading and a-Ni(OH).ACS Appl Energy Mater,2020,3(5):4756 release.J Mater Chem B,2018,6(21):3415 [15]Li HL,Xu W N,Jia F F,et al.Correlation between surface charge [32]Li B C,Zhang J P.Durable and self-healing superamphiphobic and hydration on mineral surfaces in aqueous solutions:A critical coatings repellent even to hot liquids.Chem Commun,2016, review.Int J Miner Metall Mater,2020,27(7):857 52(13):2744 [16]Zheng Y,Wang L F,Zhong F L,et al.Site-oriented design of [33]Zhu Q,Li B C,Li S B,et al.Clay-based superamphiphobic high-performance halloysite-supported palladium catalysts for coatings with low sliding angles for viscous liquids.J Colloid methane combustion.Ind Eng Chem Res,2020,59(13):5636 Interface Sci,2019,540:228 [17]Lim K,Chow W S,Pung S Y.Enhancement of thermal stability [34]Darmanin T,Guittard F.Recent advances in the potential and UV resistance of halloysite nanotubes using zinc oxide applications of bioinspired superhydrophobic materials.J Mater functionalization via a solvent-free approach.IntMiner Metall Chem A,2014,2(39:16319 Mater,2019,26(6):787 [35]Fan H F,Guo Z G.Bioinspired surfaces with wettability: [18]Cavallaro G,Milioto S,Konnova S,et al.Halloysite/keratin biomolecule adhesion behaviors.Biomater Sci,2020,8(6):1502 nanocomposite for human hair photoprotection coating.ACS App/ [36]Ghasemlou M,Daver F,Ivanova E P,et al.Bio-inspired Mater Interfaces,2020,12(21):24348 sustainable and durable superhydrophobic materials:from nature [19]Karami Z,Jazani O M,Navarchian A H,et al.Well-cured to market.J Mater Chem A,2019.7(28):16643 silicone/halloysite nanotubes nanocomposite coatings.Prog Org [37]Jing X S,Guo Z G.Biomimetic super durable and stable surfacesLazzara G, Cavallaro G, Panchal A, et al. An assembly of organicinorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface Sci, 2018, 35: 42 [6] Shamsi M H, Luqman M, Basarir F, et al. Plasma-modified halloysite nanocomposites: effect of plasma modification on the structure and dynamic mechanical properties of halloysitepolystyrene nanocomposites. Polym Int, 2010, 59(11): 1492 [7] Zhou S H, Chuan X Y. Synthesis of mesoporous carbon using halloyiste as template. J Inorg Mater, 2014, 29(6): 584 (周述慧, 传秀云. 埃洛石为模板合成中孔炭. 无机材料学报, 2014, 29(6):584) [8] Chen M Q, Chen Y, Shu Z, et al. Template-free synthesis of mesoporous silica with high specific surface area from natural halloysite and its application in methylene blue adsorption. J Inorg Mater, 2018, 33(12): 1365 (陈孟秋, 陈云, 舒杼, 等. 埃洛石原料无模板法制备高比表面积 介孔氧化硅及其在亚甲基蓝吸附中的应用. 无机材料学报, 2018, 33(12):1365) [9] Feng K Y, Hung G Y, Liu J S, et al. Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes. Chem Eng J, 2018, 331: 744 [10] Cavallaro G, Lazzara G, Milioto S, et al. Halloysite nanotubes for cleaning, consolidation and protection. Chem Record, 2018, 18(7- 8): 940 [11] Torres-Luna J A, Moreno S, Molina R, et al. Comparison of the catalytic performance of Ni, Mo, and Ni–Mo impregnated on acid halloysite nanotubes in the n-decane hydroconversion. Energy Fuels, 2019, 33(12): 12647 [12] Wu F, Pickett K, Panchal A, et al. Superhydrophobic polyurethane foam coated with polysiloxane-modified clay nanotubes for efficient and recyclable oil absorption. ACS Appl Mater Interfaces, 2019, 11(28): 25445 [13] Li Y G, Quan X J, Hu C Y, et al. Effective catalytic reduction of 4- nitrophenol to 4-aminophenol over etched halloysite nanotubes@ α-Ni(OH)2 . ACS Appl Energy Mater, 2020, 3(5): 4756 [14] Li H L, Xu W N, Jia F F, et al. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. Int J Miner Metall Mater, 2020, 27(7): 857 [15] Zheng Y, Wang L F, Zhong F L, et al. Site-oriented design of high-performance halloysite-supported palladium catalysts for methane combustion. Ind Eng Chem Res, 2020, 59(13): 5636 [16] Lim K, Chow W S, Pung S Y. Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach. Int J Miner Metall Mater, 2019, 26(6): 787 [17] Cavallaro G, Milioto S, Konnova S, et al. Halloysite/keratin nanocomposite for human hair photoprotection coating. ACS Appl Mater Interfaces, 2020, 12(21): 24348 [18] Karami Z, Jazani O M, Navarchian A H, et al. Well-cured silicone/halloysite nanotubes nanocomposite coatings. Prog Org [19] Coat, 2019, 129: 357 Cavallaro G, Milioto S, Lazzara G. Halloysite nanotubes: interfacial properties and applications in cultural heritage. Langmuir, 2020, 36(14): 3677 [20] Zeng G Y, He Y, Zhan Y Q, et al. Preparation of a novel poly(vinylidene fluoride) ultrafiltration membrane by incorporation of 3-aminopropyltriethoxysilane-grafted halloysite nanotubes for oil/water separation. Ind Eng Chem Res, 2016, 55(6): 1760 [21] Gao X B, Tang F, Jin Z X. Pt-Cu bimetallic nanoparticles loaded in the lumen of halloysite nanotubes. Langmuir, 2019, 35(45): 14651 [22] Lvov Y, Wang W C, Zhang L Q, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater, 2016, 28(6): 1227 [23] Yah W O, Takahara A, Lvov Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc, 2012, 134(3): 1853 [24] Vergaro V, Abdullayev E, Lvov Y M, et al. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 2010, 11(3): 820 [25] Hanif M, Jabbar F, Sharif S, et al. Halloysite nanotubes as a new drug-delivery system: a review. Clay Miner, 2016, 51(3): 469 [26] Owoseni O, Zhang Y H, Su Y, et al et al. Tuning the wettability of halloysite clay nanotubes by surface carbonization for optimal emulsion stabilization. Langmuir, 2015, 31(51): 13700 [27] Du M L, Guo B C, Jia D M. Newly emerging applications of halloysite nanotubes: a review. Polym Int, 2010, 59(5): 574 [28] Massaro M, Colletti C G, Lazzara G, et al. Halloysite nanotubes as support for metal-based catalysts. J Mater Chem A, 2017, 5(26): 13276 [29] Feng Y N, Zhou X P, Yang J H, et al. Encapsulation of ammonia borane in Pd/halloysite nanotubes for efficient thermal dehydrogenation. ACS Sustainable Chem Eng, 2020, 8(5): 2122 [30] Massaro M, Cavallaro G, Colletti C G, et al. Chemical modification of halloysite nanotubes for controlled loading and release. J Mater Chem B, 2018, 6(21): 3415 [31] Li B C, Zhang J P. Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chem Commun, 2016, 52(13): 2744 [32] Zhu Q, Li B C, Li S B, et al. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids. J Colloid Interface Sci, 2019, 540: 228 [33] Darmanin T, Guittard F. Recent advances in the potential applications of bioinspired superhydrophobic materials. J Mater Chem A, 2014, 2(39): 16319 [34] Fan H F, Guo Z G. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci, 2020, 8(6): 1502 [35] Ghasemlou M, Daver F, Ivanova E P, et al. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market. J Mater Chem A, 2019, 7(28): 16643 [36] [37] Jing X S, Guo Z G. Biomimetic super durable and stable surfaces · 742 · 工程科学学报,第 43 卷,第 6 期