Issue ·[Fano's inequality]lX;Y≥H(X)-H(e). -X,Y over (0,11. H() -e=Pr[X丰Y]. ·Vhat if H(δ)<H(e)? Idea 1:use success amplification to decrease 8 to * Idea 2:give up those vertices v with small H(X). ·Bound:maxp,e*log(1/e*)∑p()[HX)-H(e*)] Question:How to calculate this?Issue • [Fano’s inequality] I(X;Y) ≥ H(X) – H(ε). – X,Y over {0,1}. – ε = Pr[X ≠ Y]. • What if H(δ) < H(ε)? • Idea 1: use success amplification to decrease ε to ε*. • Idea 2: give up those vertices v with small H(X). • Bound: maxT,p,ε* log(1/ε*)∙∑vp(v)[H(Xv )-H(ε*)]+ • Question: How to calculate this? H(δ)