λ≠时,mnA=3,mnkA=2,故方程组无解 =时,mank=rank=2<3,故方程组有无穷多解 §34初等矩阵 定义对单位矩阵进行一次初等变换得到的矩阵,称为初等矩阵. [注]对单位矩阵进行一次初等列变换相当于对单位矩阵进行一次 同类型的初等行变换.因此初等矩阵可分为以下3类 1.E一 E =EGG, E 2.E→k|=Ei(k)(k≠0) k E =EG,(k) E cr+kcr k|( E→ =e,j(k)I9 2 1 时, 3 ~ rankA= , rankA= 2 , 故方程组无解. 2 1 = 时, A ~ rank = rankA= 2 3, 故方程组有无穷多解. §3.4 初等矩阵 定义 对单位矩阵进行一次初等变换得到的矩阵, 称为初等矩阵. [注] 对单位矩阵进行一次初等列变换, 相当于对单位矩阵进行一次 同类型的初等行变换.因此, 初等矩阵可分为以下 3 类: 1. ( , ) ( ) ( ) 1 0 0 1 Δ E i j j i E E E E i j r r = → 2. [ ( )] Δ E i k E k E E i k r = → (k 0) 3. [ , ( )] ( ) ( ) 1 1 Δ E i j k j i E E k E E i j r k r = → + [ , ( )] ( ) ( ) 1 1 Δ E i j k j i E E k E E j i c k c = → +