正在加载图片...
NEURAL CORRELATES OF THE DUAL-PATHWAY MODEL FOR ADHD IN ADOLESCENTS 40.Luciz tciotcelandres e(c 61 n S I la JA.c and sey BJ,et al:Differentialeffects of DRD4 rder stin itdatieniondeicty ctinitrydisorder,he 29527-538 that enhance cognitive L Chen Q Wang W. 62 plotype of the dop 44.D 64. al MRI ADHD: tects ofage and 420 66. Rubia K. egr on brain v人042i08w42i0 2014:7 7 013: 3252 the gene y2016,73:1285-1292 der before and after 49 311 69 cker onships a y.Front Hum 2013:7 in atten Aten Disord 864 on and 1370 in children with att 53 72.Ha A.Hakimi S.Rangel A:A 20148:5 ols sp 4 ifG:Th e brain insights fro eve wand meta ce.Nat Rev ci2015;1 Rev2016:68:838-847 .0p 57 oscBiobeh Weaten .t al selethe ontal 层t nt of the al corte 18 et al:In ing in the fi Caballero A.Granber 0gy2015:40:546-5 re R Tse min 201670+ fur atter 80. 854 aip psychiatryonline org Am J Psychiatry 177:9.September 202040. Luciana M: Practitioner review: computerized assessment of neu￾ropsychological function in children: clinical and research appli￾cations of the Cambridge Neuropsychological Testing Automated Battery (CANTAB). J Child Psychol Psychiatry 2003; 44:649–663 41. Kempton S, Vance A, Maruff P, et al: Executive function and at￾tention deficit hyperactivity disorder: stimulant medication and better executive function performance in children. Psychol Med 1999; 29:527–538 42. D’Alberto N, Chaarani B, Orr CA, et al: Individual differences in stop￾related activity are inflated by the adaptive algorithm in the stop signal task. Hum Brain Mapp 2018; 39:3263–3276 43. Luo Q, Chen Q, Wang W, et al: Association of a schizophrenia-risk nonsynonymous variant with putamen volume in adolescents: a voxelwise and genome-wide association study. JAMA Psychiatry 2019; 76:435–445 44. Dennis M, Francis DJ, Cirino PT, et al: Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J Int Neuro￾psychol Soc 2009; 15:331–343 45. Eklund A, Nichols TE, Knutsson H: Cluster failure: why fMRI in￾ferences for spatial extent haveinflated false-positive rates. ProcNatl Acad Sci USA 2016; 113:7900–7905 46. Ho DE, Imai K, King G, et al: MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw 2011; 42 (https://www. jstatsoft.org/index.php/jss/article/view/v042i08/v42i08.pdf ) 47. Demontis D, Walters RK, Martin J, et al: Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 2019; 51:63–75 48. Riglin L, Collishaw S, Thapar AK, et al: Association of genetic risk variants with attention-deficit/hyperactivity disorder trajectories in the general population. JAMA Psychiatry 2016; 73:1285–1292 49. Euesden J, Lewis CM, O’Reilly PF: PRSice: polygenic risk score software. Bioinformatics 2015; 31:1466–1468 50. Ahrendts J, Rüsch N, Wilke M, et al: Visual cortex abnormalities in adults with ADHD: a structural MRI study. World J Biol Psychiatry 2011; 12:260–270 51. Lin H-Y, Hsieh H-C, Lee P, et al: Auditory and visual attention performance in children with ADHD: the attentional deficiency of ADHD is modality specific. J Atten Disord 2017; 21:856–864 52. Xia S, Foxe JJ, SroubekAE,etal:Topological organization of the“small￾world” visual attention network in children with attention deficit/ hyperactivity disorder (ADHD). Front Hum Neurosci 2014; 8:162 53. Shulman GL, Astafiev SV, Franke D, et al: Interaction of stimulus￾driven reorienting and expectation in ventral and dorsal fronto￾parietal and basal ganglia-cortical networks. J Neurosci 2009; 29: 4392–4407 54. Capotosto P, Babiloni C, Romani GL, et al: Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci 2009; 29:5863–5872 55. Catani M, Thiebaut de Schotten M: A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 2008; 44: 1105–1132 56. Chen L, Hu X, Ouyang L, et al: A systematic review and meta-analysis of tract-based spatial statistics studies regarding attention-deficit/ hyperactivity disorder. Neurosci Biobehav Rev 2016; 68:838–847 57. Barkley RA: Behavioralinhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121:65–94 58. Kvickström P, Eriksson B, van Westen D, et al: Selective frontal neurodegeneration of the inferior fronto-occipital fasciculus in progressive supranuclear palsy (PSP) demonstrated by diffusion tensor tractography. BMC Neurol 2011; 11:13 59. Brown AB, Biederman J, Valera EM, et al: Effect of dopamine transporter gene (SLC6A3) variation on dorsal anterior cingulate function in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:365–375 60. Floresco SB, Magyar O: Mesocortical dopamine modulation of ex￾ecutive functions: beyond working memory. Psychopharmacology (Berl) 2006; 188:567–585 61. Durston S, Fossella JA, Casey BJ, et al: Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Mol Psychiatry 2005; 10:678–685 62. Berridge CW, Devilbiss DM, Andrzejewski ME, et al: Methylphe￾nidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006; 60:1111–1120 63. Shang CY, Lin HY, Tseng WY, et al: A haplotype of the dopamine transporter gene modulates regional homogeneity, gray matter volume, and visual memory in children with attention-deficit/ hyperactivity disorder. Psychol Med 2018; 48:2530–2540 64. Frodl T, Skokauskas N: Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand 2012; 125:114–126 65. Nakao T, Radua J, Rubia K, et al: Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry 2011; 168:1154–1163 66. Rubia K, Alegria AA, Cubillo AI, et al: Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Biol Psychiatry 2014; 76:616–628 67. del Campo N, Fryer TD, Hong YT, et al: A positron emission to￾mography study of nigro-striatal dopaminergic mechanisms un￾derlying attention: implications for ADHD and its treatment. Brain 2013; 136:3252–3270 68. Low AM, Vangkilde S, le Sommer J, et al: Visual attention in adults with attention-deficit/hyperactivity disorder before and after stimulant treatment. Psychol Med 2019; 49:2617–2625 69. Crocker LD, Heller W, Warren SL, et al: Relationships among cog￾nition, emotion, and motivation: implications for intervention and neuroplasticity in psychopathology. Front Hum Neurosci 2013; 7:261 70. Hart H, Radua J, Nakao T, et al:Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention￾deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry 2013; 70:185–198 71. Wittmann M, Leland DS, Paulus MP: Time and decision making: differential contribution of the posteriorinsular cortex and the striatum during a delay discounting task. Exp Brain Res 2007; 179:643–653 72. Hare TA, Hakimi S, Rangel A: Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting. Front Neurosci 2014; 8:50 73. Owens MM, Gray JC, Amlung MT, et al: Neuroanatomical foun￾dations of delayed reward discounting decisionmaking. Neuroimage 2017; 161:261–270 74. Owens MM, Duda B, Sweet LH, et al: Distinct functional and structural neural underpinnings of working memory. Neuroimage 2018; 174:463–471 75. Amso D, Scerif G: The attentive brain: insights from developmental cognitive neuroscience. Nat Rev Neurosci 2015; 16:606–619 76. Academy ofMedical SciencesWorking Group (Chaired by Professor Sir Gabriel Horn): Brain Science, Addiction, and Drugs (Addiction and Drugs Project). London, Academy of Medical Sciences, 2008 77. Bourne JA: Unravelling the development of the visual cortex: im￾plications for plasticity and repair. J Anat 2010; 217:449–468 78. Cho SS, Koshimori Y, Aminian K, et al: Investing in the future: stimulation of the medial prefrontal cortex reduces discounting of delayed rewards. Neuropsychopharmacology 2015; 40:546–553 79. Caballero A, Granberg R, Tseng KY: Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Bio￾behav Rev 2016; 70:4–12 80. Foulkes L, Blakemore S-J: Studying individual differences in human adolescent brain development. Nat Neurosci 2018; 21:315–323 854 ajp.psychiatryonline.org Am J Psychiatry 177:9, September 2020 NEURAL CORRELATES OF THE DUAL-PATHWAY MODEL FOR ADHD IN ADOLESCENTS
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有