当x>e时,∫"(x)<0→f(x)单减,则un单减; 于是un>un+1(m=3>,4,…) 而limf(x)=li m e ex++oo x =e=1 x→+0 x→10 limu =lim(f(n)-1)=0 n→ n→0 故原级数条件收敛 (4∑(-)cos) n 解因imyn=lm(oy”=则W、 n→0 lim(-sin2I,It H→ =e2<1 由根值判别法知∑u收敛.故原级数绝对收敛 11=10 f x ( ) 0 1 ( 3 ,4, ) 于是 u u n e n n = + ln lim ( ) lim x x x x f x e →+ →+ 而 = ln lim 0 1 x x x e e →+ = = = lim lim( ( ) 1) 0 n n n u f n → → = − = 故原级数条件收敛. 当 x > e 时, 单减, 则 un 3 1 1 (4) ( 1) (cos ) n n n n = − 2 2 2 1 lim(1 sin ) n n→ n − 2 2 1 1 lim ( sin ) 2 2 1 n n n e e → − − = = 1 n n u = 由根值判别法知 收敛. 故原级数绝对收敛. f x( ) 单减; 1 2 lim lim( cos )n n n n n u → → n 解 因 = =