正在加载图片...
对于非圆形管内的湍流流动,仍可用在圆形管内流动阻力的计算式,但需用非圆形管道 的当量直径代替圆管直径。当量直径定义为 -4 (1-46) 对于套管环隙,当内管的外径为d,外管的内径为d山时,其当量直径为 a好-d) +成4-d d.=44 对于边长分别为a、b的矩形管,其当量直径为 d.=4-ab2ab 2(a+b)a+b 在层流情况下,当采用当量直径计算阻力时,还应对式(140)进行修正,改写为 A-C (1-47) 式中C为无因次常数。 一些非圆形管的C值见教材。 注意,当量直径只用于非圆形管道流动阻力的计算,而不能用于流通面积及流速的计算。 1.4.2局部阻力 局部阻力有两种计算方法:阻力系数法和当量长度法。 1.阻力系数法 克服局部阻力所消耗的机械能,可以表示为动能的某一倍数,即 所=货 (1-48) 或 (1-48a) 式中5称为局部阻力系数,一般由实验测定。 常用管件及阀门的局部阻力系数见教材。注意表中当管截面突然扩大和突然缩小时,式 (1-48)及(1-48a)中的速度u均以小管中的速度计。 当流体自容器进入管内,5口=0.5,称为进口阻力系数:当流体自管子进入容器或从9 对于非圆形管内的湍流流动,仍可用在圆形管内流动阻力的计算式,但需用非圆形管道 的当量直径代替圆管直径。当量直径定义为  =   A de 4 =4 润湿周边 流通截面积 (1-46) 对于套管环隙,当内管的外径为 d1,外管的内径为 d2 时,其当量直径为 ( ) 2 1 2 1 2 1 2 2 4 4 d d d d d d de = − + − =    对于边长分别为 a、b 的矩形管,其当量直径为 a b ab a b ab de + = + = 2 2( ) 4 在层流情况下,当采用当量直径计算阻力时,还应对式(1-40)进行修正,改写为 Re C  = (1-47) 式中 C 为无因次常数。 一些非圆形管的 C 值见教材。 注意,当量直径只用于非圆形管道流动阻力的计算,而不能用于流通面积及流速的计算。 1.4.2 局部阻力 局部阻力有两种计算方法:阻力系数法和当量长度法。 1. 阻力系数法 克服局部阻力所消耗的机械能,可以表示为动能的某一倍数,即 2 2 ' u Wf =  (1-48) 或 g u hf 2 2 ' =  (1-48a) 式中ζ称为局部阻力系数,一般由实验测定。 常用管件及阀门的局部阻力系数见教材。注意表中当管截面突然扩大和突然缩小时,式 (1-48)及(1-48a)中的速度 u 均以小管中的速度计。 当流体自容器进入管内,  进口 = 0.5 ,称为进口阻力系数;当流体自管子进入容器或从
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有