正在加载图片...
·1338 北京科技大学学报 第35卷 AA6082:Experimentation and modelling.Int J Mach 80「 A△AAAA Tool Man5,2012.53:27 70F [5]Ding X F,Zhang L X,Sun D B,et al.Flow behaviors of 60F 6005A and 6082 aluminum alloys during hot deformation ● 。◆。 50F J Univ Sci Technol Beijing,2012,34(9):1041 40F 4 ■■■■■■ (丁贤飞,张利欣,孙冬柏,等.6005A与6082铝合金热变 形流变行为.北京科技大学学报,2012,34(9):1041) 立30 -0.181 (6]Yi Y P,Yang J H,Lin Y C.Flow stress constitutive equa- 301 ▲10s1 tion of 7050 aluminum alloy during hot compression.J 0 Mater Eng,2007(4):20 (易幼平,杨积慧,蔺永诚.7050铝合金热压缩变形的流变 0.0 0.1 0.20.30.40.50.6 应力本构方程.材料工程,2007(4):20) 其应变,8 [7]Li H P,Zhao G Q,He L F,et al.Research on the con- 图7550℃下6111铝合金真应力-真应变的预测值(实 stitutive relationship of hot stamping boron steel B 1500 线)与试验值(符号) HS at high temperature.J Mech Eng,2012,48(8):21 Fig.7 Predicted (solid curves)and experimental (symbols) (李辉平,赵国群,贺连方,等.热冲压爾钢B1500HS高温 stress-strain relationships for 6111 aluminum alloy at 550 C 本构方程的研究.机械工程学报,2012,48(8:21) [8]Li X S,Chen J,Zhang H B.Constitutive model for hot 流变应力随应变速率的增大而增大:在同一应变速 deformation of 6082 aluminum alloy.Chin J Nonferrous 率、不同变形温度条件下,同一应变量所对应的流 Met,2008,18(10):1769 变应力随温度的升高而减小.6111铝合金热变形经 (李雪松,陈军,张鸿冰.6082铝合金的热变形本构方程.中 历了从应变硬化阶段过渡到稳态变形阶段的过程. 国有色金属学报,2008,18(10):1769) (2)考虑应变、温度及应变速率对流变应力的 [9 Huang C Q,Diao J P,Deng H.Constitutive model for 影响,建立了耦合位错密度的6111铝合金统一黏 hot deformation of aluminum alloy.J Cent Sout Univ Sci Technol,2011.42(12):3702 塑性本构模型. (黄长清,刁金鹏,邓华.铝合金热变形的本构模型研究.中 (3)通过遗传算法求解出了本构模型中的材料 南大学学报:自然科学版,2011,42(12):3702) 常数,并代入到所建立的本构模型中,其预测值与 [10]McQueen H J,Fry E,Belling J.Comparative constitutive 试验得到的数据吻合较好.该本构模型能够较好地 constants for hot working of Al-4.4Mg-0.7Mn(AA5083).J 描述6111铝合金在热变形下的流变应力. Mater Eng Perform,2001,10(2):164 [11]Zhang Z,Lang L H,Li T,et al.Constitutive equations of 参考文献 high strength aluminum alloy sheet 7B04-T6 under warm tension.J Beijing Univ Aeronaut Astronaut,2009,35(5): [1]Yu Z Q,Zhao Y X,Lin Z Q.Evaluation parameter of 600 drawability of automotive aluminum alloy sheets.Chin J (张志,郎利辉,李涛,等.高强度铝合金7B04T6板材温 Nonferrous Met,2004,14(10):1689 拉伸本构方程.北京航空航天大学学报,2009,35(5):600) (于忠奇,赵亦希,林忠钦.汽车用铝合金板拉深性能评估参 [12]Guo X Y,Xiao Y H,Lan H,et al.Study on flow de 数.中国有色金属学报,2004,14(10):1689) formation behavior of high strength aluminum alloy 7A04 [2]Ding X Y,He G Q,Chen C S,et al.Advance in studies at elevated temperature.Forg Stamping Technol,2011 of 6000 aluminum alloy for automobile.J Mater Sci Eng. 36(4):138 2005,23(2):302 (郭小艳,肖艳红,兰辉,等.超高强铝合金7A04高温流变 (丁向阳,何国球,陈成澍,等.6000系汽车车用铝合金的 行为的研究.锻压技术,2011,36(4):138) 研究应用进展.材料科学与工程学报,2005,23(2):302) [13]Lin J,Dean T A.Modelling of microstructure evolution in [3]Chen Y,Zhao G,Liu C M,et al.Texture evolvement hot forming using unified constitutive equations.J Mater of aluminum alloy 6111 during cold rolling.J Northeast Process Technol,2005,167(2/3):354 Univ Nat Sci,2006,27(1):41 [14]Lin J,Liu Y.A set of unified constitutive equations for (陈扬,赵刚,刘春明,等.6111铝合金在冷轧过程中织构 modelling microstructure evolution in hot deformation.J 的变化.东北大学学报:自然科学版,2006,27(1)41) Mater Process Technol.2003,143/144:281 [4]Mohamed S,Foster A D,Lin J G,et al.Investigation [15]Nes E.Modelling of work hardening and stress saturation of deformation and failure features in hot stamping of in FCC metals.Prog Mater Sci,1997,41(3):129· 1338 · 北 京 科 技 大 学 学 报 第 35 卷 图 7 550 ℃下 6111 铝合金真应力 − 真应变的预测值 (实 线) 与试验值 (符号) Fig.7 Predicted (solid curves) and experimental (symbols) stress-strain relationships for 6111 aluminum alloy at 550 ℃ 流变应力随应变速率的增大而增大;在同一应变速 率、不同变形温度条件下,同一应变量所对应的流 变应力随温度的升高而减小. 6111 铝合金热变形经 历了从应变硬化阶段过渡到稳态变形阶段的过程. (2) 考虑应变、温度及应变速率对流变应力的 影响,建立了耦合位错密度的 6111 铝合金统一黏 塑性本构模型. (3) 通过遗传算法求解出了本构模型中的材料 常数,并代入到所建立的本构模型中,其预测值与 试验得到的数据吻合较好. 该本构模型能够较好地 描述 6111 铝合金在热变形下的流变应力. 参 考 文 献 [1] Yu Z Q, Zhao Y X, Lin Z Q. Evaluation parameter of drawability of automotive aluminum alloy sheets. Chin J Nonferrous Met, 2004, 14(10): 1689 (于忠奇, 赵亦希, 林忠钦. 汽车用铝合金板拉深性能评估参 数. 中国有色金属学报, 2004, 14(10): 1689) [2] Ding X Y, He G Q, Chen C S, et al. Advance in studies of 6000 aluminum alloy for automobile. J Mater Sci Eng, 2005, 23(2): 302 (丁向阳, 何国球, 陈成澍, 等. 6000 系汽车车用铝合金的 研究应用进展. 材料科学与工程学报, 2005, 23(2): 302) [3] Chen Y, Zhao G, Liu C M, et al. Texture evolvement of aluminum alloy 6111 during cold rolling. J Northeast Univ Nat Sci, 2006, 27(1):41 (陈扬, 赵刚, 刘春明, 等. 6111 铝合金在冷轧过程中织构 的变化. 东北大学学报: 自然科学版, 2006, 27(1): 41) [4] Mohamed S, Foster A D, Lin J G, et al. Investigation of deformation and failure features in hot stamping of AA6082: Experimentation and modelling. Int J Mach Tool Manuf, 2012, 53: 27 [5] Ding X F, Zhang L X, Sun D B, et al. Flow behaviors of 6005A and 6082 aluminum alloys during hot deformation. J Univ Sci Technol Beijing, 2012, 34(9):1041 (丁贤飞, 张利欣, 孙冬柏, 等. 6005A 与 6082 铝合金热变 形流变行为. 北京科技大学学报, 2012, 34(9): 1041) [6] Yi Y P, Yang J H, Lin Y C. Flow stress constitutive equa￾tion of 7050 aluminum alloy during hot compression. J Mater Eng, 2007(4): 20 (易幼平, 杨积慧, 蔺永诚. 7050 铝合金热压缩变形的流变 应力本构方程. 材料工程, 2007(4): 20) [7] Li H P, Zhao G Q, He L F, et al. Research on the con￾stitutive relationship of hot stamping boron steel B 1500 HS at high temperature. J Mech Eng, 2012, 48(8): 21 (李辉平, 赵国群, 贺连方, 等. 热冲压硼钢 B1500HS 高温 本构方程的研究. 机械工程学报, 2012, 48(8): 21) [8] Li X S, Chen J, Zhang H B. Constitutive model for hot deformation of 6082 aluminum alloy. Chin J Nonferrous Met, 2008, 18(10): 1769 (李雪松, 陈军, 张鸿冰. 6082 铝合金的热变形本构方程. 中 国有色金属学报, 2008, 18(10): 1769) [9] Huang C Q, Diao J P, Deng H. Constitutive model for hot deformation of aluminum alloy. J Cent Sout Univ Sci Technol, 2011, 42(12): 3702 (黄长清, 刁金鹏, 邓华. 铝合金热变形的本构模型研究. 中 南大学学报: 自然科学版, 2011, 42(12): 3702) [10] McQueen H J, Fry E, Belling J. Comparative constitutive constants for hot working of Al-4.4Mg-0.7Mn(AA5083). J Mater Eng Perform, 2001, 10(2): 164 [11] Zhang Z, Lang L H, Li T, et al. Constitutive equations of high strength aluminum alloy sheet 7B04-T6 under warm tension. J Beijing Univ Aeronaut Astronaut, 2009, 35(5): 600 (张志, 郎利辉, 李涛, 等. 高强度铝合金 7B04-T6 板材温 拉伸本构方程. 北京航空航天大学学报, 2009, 35(5): 600) [12] Guo X Y, Xiao Y H, Lan H, et al. Study on flow de￾formation behavior of high strength aluminum alloy 7A04 at elevated temperature. Forg Stamping Technol, 2011, 36(4): 138 (郭小艳, 肖艳红, 兰辉, 等. 超高强铝合金 7A04 高温流变 行为的研究. 锻压技术, 2011, 36(4): 138) [13] Lin J, Dean T A. Modelling of microstructure evolution in hot forming using unified constitutive equations. J Mater Process Technol, 2005, 167(2/3): 354 [14] Lin J, Liu Y. A set of unified constitutive equations for modelling microstructure evolution in hot deformation. J Mater Process Technol, 2003, 143/144: 281 [15] Nes E. Modelling of work hardening and stress saturation in FCC metals. Prog Mater Sci, 1997, 41(3): 129
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有