正在加载图片...
第5期 李桂荣等:微纳米ZrB,。/Al复合材料的原位合成机制和组织特征 ·557· 米ZB2颗粒增强铝基复合材料.优化的合成工艺 in situ Al-based composites containing TiB,and Al,O:submicron 为:起始合成温度850~870℃,反应时间为25~ particles.Compos Sci Technol,2005,65(10):1537 30min.此时ZrB,颗粒尺寸为300~400nm,颗粒间 [5]Zhao YT,Zhang S L,Chen G,et al.Effeets of molten tempera- ture on the morphologies of in situ AlZr and ZrB and wear prop- 距200nm左右.当颗粒理论体积分数为3%时,单 erties of (Al Zr +ZrB,)/Al composites.Mater Sci Eng A,2007, 位体积颗粒形核数量为6.68×10”m-3,平均线长 457(1/2):156 大速率为47.3nm·s-1. [6]Wang Y,Wang H Y,Xiu K,et al.Fabrication of TiB2 particulate (2)从扩散、黏度和密度等因素分析了亚微米 reinforced magnesium matrix composites by two step processing method.Mater Lett,2006,60(12):1533 ZrB,颗粒团簇的原因.认为从理论上看,ZxB,粒子 7]Kerti I.Production of TiC reinforced-aluminum composites with 无规则碰撞后引起颗粒扩散位移,可使350nm颗粒 the addition of elemental carbon.Mater Lett,2005,59 (29/30): 在10min内迁移1925.5nm,相当于5.5倍颗粒直 3795 径,但大量细小的高熔点ZB2颗粒悬浮于铝液中增 [8]Marur P R.An engineering approach for evaluating effective elas- 加了熔体黏度和黏滞阻力,限制了颗粒迁移:此外 tic moduli of particulate composites.Mater Lett,2004,58 (30): ZB,颗粒密度大,虽然尺寸小,但仍具有较高的沉 3971 9]Cholewa M.Simulation of solidification process for composites mi- 降速率,也是造成颗粒团簇的重要原因 croegion with incomplete wetting of reinforcing particle.Mater (3)应用治金物理化学理论分析了原位反应热 Process Technol,2005,164/165:1181 力学和动力学过程.结果表明:合成过程中间相是 [10]Roy D,Ghosh S,Basumallick A,et al.Preparation of Fe-alumi- AlZr、AlB2、☑x]原子和B]原子,通过A山Zr-AlB2 nide reinforced in situ metal matrix composites by reactive hot pressing.Mater Sci Eng A,2006,415(1/2)202 间的分子化合及[☑]一B]间的原子化合得到高温 [11]Li G R,Zhao Y T,Dai Q X,et al.Fabrication and properties of 稳定的ZrB2相. in situ synthesized particles reinforced aluminum matrix compos- ites of Al-Zr-0-B system.J Mater Sci,2007,42(14):5442 参考文献 [12]Wang H M,Li G R,Zhao Y T,et al.In situ fabrication and mi- [1]Li G R,Zhao Y T,Dai QX,et al.Effect of casting technologies crostructure of Al2O3 particles reinforced aluminum matrix com- on microstructures and properties of (Al2O+Al Zr)/A356 in posites.Mater Sci Eng A,2010,527(12):2881 situ composites.Chin J Nonferrous Met,2006,16(12):2060 13] Wang H M,Li G R,Zhao Y T,et al.Wear behavior of (Al Zr (李桂荣,赵玉涛,戴起锄,等.铸造工艺对(A203+AZ)。/ +Al203)/A359 composites by in-situ electromagnetic casting A356原位复合材料组织和性能的影响.中国有色金属学报, Rare Met Mater Eng,2006,35(4):669 2006,16(12):2060) (王宏明,李桂荣,赵玉涛,等.电磁铸造法制备的(A203+ 2]Wang C S.Geng L,Wang D Z.Microstructure formation mecha- A3Zx)),/A359复合材料的磨损行为.稀有金属材料与工程, nism of (Al2O3 TiB +Al Ti)/Al composites fabricated by re- 2006,35(4):669) active hot pressing.Key Eng Mater,2007,353-358:1439 14]Kolednik O,Unterweger K.The ductility of metal matrix compos- B3]Onlii BS,Atik E.Tribological properties of journal bearings man- ites-relation to local deformation behavior and damage evolution. ufactured from particle reinforced Al composites.Mater Des, Eng Fract Mech,2008,75(12):3663 2009,30(4):1381 [15]Wang H M,Li G R,Dai Q X,et al.Effect of additives on vis- Tiong S C,Wang G S,Mai Y W.High cycle fatigue response of cosity of LATS refining ladle slag.IS/J Int,2006,46(5):637第 5 期 李桂荣等: 微纳米 ZrB2p /Al 复合材料的原位合成机制和组织特征 米 ZrB2 颗粒增强铝基复合材料. 优化的合成工艺 为: 起始 合 成 温 度 850 ~ 870 ℃,反 应 时 间 为25 ~ 30 min. 此时 ZrB2 颗粒尺寸为 300 ~ 400 nm,颗粒间 距 200 nm 左右. 当颗粒理论体积分数为 3% 时,单 位体积颗粒形核数量为 6. 68 × 1017 m - 3 ,平均线长 大速率为 47. 3 nm·s - 1 . ( 2) 从扩散、黏度和密度等因素分析了亚微米 ZrB2 颗粒团簇的原因. 认为从理论上看,ZrB2 粒子 无规则碰撞后引起颗粒扩散位移,可使 350 nm 颗粒 在 10 min 内迁移 1 925. 5 nm,相当于 5. 5 倍颗粒直 径,但大量细小的高熔点 ZrB2 颗粒悬浮于铝液中增 加了熔体黏度和黏滞阻力,限制了颗粒迁移; 此外 ZrB2 颗粒密度大,虽然尺寸小,但仍具有较高的沉 降速率,也是造成颗粒团簇的重要原因. ( 3) 应用冶金物理化学理论分析了原位反应热 力学和动力学过程. 结果表明: 合成过程中间相是 Al3Zr、AlB2、[Zr]原子和[B]原子,通过 Al3Zr--AlB2 间的分子化合及[Zr]--[B]间的原子化合得到高温 稳定的 ZrB2 相. 参 考 文 献 [1] Li G R,Zhao Y T,Dai Q X,et al. Effect of casting technologies on microstructures and properties of ( Al2O3 + Al3 Zr) p /A356 in situ composites. Chin J Nonferrous Met,2006,16( 12) : 2060 ( 李桂荣,赵玉涛,戴起勋,等. 铸造工艺对( Al2O3 + Al3 Zr) p / A356 原位复合材料组织和性能的影响. 中国有色金属学报, 2006,16( 12) : 2060) [2] Wang G S,Geng L,Wang D Z. Microstructure formation mecha￾nism of ( Al2O3 + TiB2 + Al3 Ti) /Al composites fabricated by re￾active hot pressing. Key Eng Mater,2007,353--358: 1439 [3] nlü B S,Atik E. Tribological properties of journal bearings man￾ufactured from particle reinforced Al composites. Mater Des, 2009,30( 4) : 1381 [4] Tjong S C,Wang G S,Mai Y W. High cycle fatigue response of in situ Al-based composites containing TiB2 and Al2O3 submicron particles. Compos Sci Technol,2005,65( 10) : 1537 [5] Zhao Y T,Zhang S L,Chen G,et al. Effects of molten tempera￾ture on the morphologies of in situ Al3 Zr and ZrB2 and wear prop￾erties of ( Al3 Zr + ZrB2 ) /Al composites. Mater Sci Eng A,2007, 457( 1 /2) : 156 [6] Wang Y,Wang H Y,Xiu K,et al. Fabrication of TiB2 particulate reinforced magnesium matrix composites by two step processing method. Mater Lett,2006,60( 12) : 1533 [7] Kerti I. Production of TiC reinforced-aluminum composites with the addition of elemental carbon. Mater Lett,2005,59( 29 /30) : 3795 [8] Marur P R. An engineering approach for evaluating effective elas￾tic moduli of particulate composites. Mater Lett,2004,58( 30) : 3971 [9] Cholewa M. Simulation of solidification process for composites mi￾cro-region with incomplete wetting of reinforcing particle. J Mater Process Technol,2005,164 /165: 1181 [10] Roy D,Ghosh S,Basumallick A,et al. Preparation of Fe-alumi￾nide reinforced in situ metal matrix composites by reactive hot pressing. Mater Sci Eng A,2006,415( 1 /2) : 202 [11] Li G R,Zhao Y T,Dai Q X,et al. Fabrication and properties of in situ synthesized particles reinforced aluminum matrix compos￾ites of Al-Zr-O-B system. J Mater Sci,2007,42( 14) : 5442 [12] Wang H M,Li G R,Zhao Y T,et al. In situ fabrication and mi￾crostructure of Al2O3 particles reinforced aluminum matrix com￾posites. Mater Sci Eng A,2010,527( 12) : 2881 [13] Wang H M,Li G R,Zhao Y T,et al. Wear behavior of ( Al3 Zr + Al2O3 ) p /A359 composites by in-situ electromagnetic casting. Rare Met Mater Eng,2006,35( 4) : 669 ( 王宏明,李桂荣,赵玉涛,等. 电磁铸造法制备的( Al2O3 + Al3 Zr) p /A359 复合材料的磨损行为. 稀有金属材料与工程, 2006,35( 4) : 669) [14] Kolednik O,Unterweger K. The ductility of metal matrix compos￾ites-relation to local deformation behavior and damage evolution. Eng Fract Mech,2008,75( 12) : 3663 [15] Wang H M,Li G R,Dai Q X,et al. Effect of additives on vis￾cosity of LATS refining ladle slag. ISIJ Int,2006,46( 5) : 637 ·557·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有