正在加载图片...
工程科学学报.第43卷,第10期:1413-1424.2021年10月 Chinese Journal of Engineering,Vol.43,No.10:1413-1424,October 2021 https://doi.org/10.13374/j.issn2095-9389.2021.01.14.008;http://cje.ustb.edu.cn 低冰粘附强度表面设计与制备研究进展 江华阳,吴楠四,吕家杰》,刘钧)区,尹昌平),高世涛) 1)国防科技大学空天科学学院材料科学与工程系,长沙4100732)96901部队31分队,北京100094 ☒通信作者,E-mail:lierenwn@nudt.edu.cn,liujun502@qg.com 摘要表面结冰给通讯、电力等工业领域带来巨大损失,电加热和喷洒乙二醇等主动除冰方法虽然在一定程度上可以解决 上述问题,但在能源、人力、环境方面需付出较高代价,为解决这一问题,低成本、低能耗的被动式防除冰表面被寄予厚望 防除冰表面主要分为延长结冰时间的防冰表面和低冰粘附强度的除冰表面.由于实际工况的复杂性,除冰表面比防冰表面 更具有可实现性.除冰表面主要与低表面能、界面滑动和裂纹产生相关,低冰粘附强度表面按实现机理可分为化学改性低表 面能表面、润滑表面、界面滑动表面和裂纹源表面.本文对不同类型低冰粘附表面的低冰粘附强度产生的原因和表面的制备 方法进行总结.同时,对冰粘附强度的测量标准进行了说明和讨论,以解释不同的测试方法对防除冰性能测试结果造成的 差异. 关键词除冰:冰粘附:测量标准:表面设计:超浸润 分类号TB34 Research progress on the design principle and preparation of low ice adhesion surface JIANG Hua-yang,WU Nan,LU Jia-jie,LIU Jun,YIN Chang-ping,GAO Shi-tao) 1)Department of Materials Science and Engineering.College of Aerospace Science and Engineering,National University of Defense Technology, Changsha 410073,China 2)Unit 31,PLA 96901,Beijing 100094,China Corresponding author,E-mail:lierenwn @nudt.edu.cn;liujun502@qq.com ABSTRACT Ice accretion on a bare surface causes a serious problem in industries and daily life such as communication,electricity, and transportation.At present,the main de-icing method is active de-icing.which includes mechanical de-icing or electric-thermal de- icing and spraying glycol anti-icing agents.These methods have a high cost of manpower,energy,and environment.In addition,active de-icing is not applicable in many scenarios.To solve this problem,icephobic surfaces are expected to be widely used.Icephobic surfaces can be divided into surfaces that prolong the freezing time and surfaces with low ice adhesion.Anti-icing surfaces,represented by superhydrophobic surfaces,can inhibit a stable formation of ice nucleation from delaying ice formation,which enables the supercooled droplets to rebound from the surface to prevent ice formation.However,under high humidity and high atmospheric pressure,the superhydrophobic surface may lose efficiency due to frosting and other reasons.Compared with anti-icing surfaces,de- icing surfaces are more achievable.Thus,this article mainly explores surfaces with low ice adhesion.Passive de-icing mainly refers to the construction of the ice sparing surface on a bare substrate to reduce the adhesion strength of icing.Compared with active de-icing methods,the passive method has advantages of low energy consumption,low cost,and environmental friendliness.The realization of low ice adhesion is mainly related to low surface energy,interface slippage,and crack initiation.According to the realization mechanism, low ice adhesion surfaces can be divided into low surface energy surfaces,lubricated surfaces,interfacial slippage and low shear modulus surfaces,and crack initiators surfaces.The design principles and mechanism of the de-icing surface are explored and 收稿日期:2021-01-14 基金项目:湖南省自然科学基金资助项目(2021JJ30028)低冰粘附强度表面设计与制备研究进展 江华阳1),吴    楠1) 苣,吕家杰1),刘    钧1) 苣,尹昌平1),高世涛2) 1) 国防科技大学空天科学学院材料科学与工程系, 长沙 410073    2) 96901 部队 31 分队, 北京 100094 苣通信作者, E-mail: lierenwn@nudt.edu.cn; liujun502@qq.com 摘    要    表面结冰给通讯、电力等工业领域带来巨大损失,电加热和喷洒乙二醇等主动除冰方法虽然在一定程度上可以解决 上述问题,但在能源、人力、环境方面需付出较高代价. 为解决这一问题,低成本、低能耗的被动式防/除冰表面被寄予厚望. 防/除冰表面主要分为延长结冰时间的防冰表面和低冰粘附强度的除冰表面. 由于实际工况的复杂性,除冰表面比防冰表面 更具有可实现性. 除冰表面主要与低表面能、界面滑动和裂纹产生相关,低冰粘附强度表面按实现机理可分为化学改性低表 面能表面、润滑表面、界面滑动表面和裂纹源表面. 本文对不同类型低冰粘附表面的低冰粘附强度产生的原因和表面的制备 方法进行总结. 同时,对冰粘附强度的测量标准进行了说明和讨论,以解释不同的测试方法对防/除冰性能测试结果造成的 差异. 关键词    除冰;冰粘附;测量标准;表面设计;超浸润 分类号    TB34 Research progress on the design principle and preparation of low ice adhesion surface JIANG Hua-yang1) ,WU Nan1) 苣 ,LÜ Jia-jie1) ,LIU Jun1) 苣 ,YIN Chang-ping1) ,GAO Shi-tao2) 1) Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China 2) Unit 31, PLA 96901, Beijing 100094, China 苣 Corresponding author, E-mail: lierenwn@nudt.edu.cn; liujun502@qq.com ABSTRACT    Ice accretion on a bare surface causes a serious problem in industries and daily life such as communication, electricity, and transportation. At present, the main de-icing method is active de-icing, which includes mechanical de-icing or electric-thermal de￾icing and spraying glycol anti-icing agents. These methods have a high cost of manpower, energy, and environment. In addition, active de-icing  is  not  applicable  in  many  scenarios.  To  solve  this  problem,  icephobic  surfaces  are  expected  to  be  widely  used.  Icephobic surfaces can be divided into surfaces that prolong the freezing time and surfaces with low ice adhesion. Anti-icing surfaces, represented by  superhydrophobic  surfaces,  can  inhibit  a  stable  formation  of  ice  nucleation  from  delaying  ice  formation,  which  enables  the supercooled  droplets  to  rebound  from  the  surface  to  prevent  ice  formation.  However,  under  high  humidity  and  high  atmospheric pressure, the superhydrophobic surface may lose efficiency due to frosting and other reasons. Compared with anti-icing surfaces, de￾icing surfaces are more achievable. Thus, this article mainly explores surfaces with low ice adhesion. Passive de-icing mainly refers to the construction of the ice sparing surface on a bare substrate to reduce the adhesion strength of icing. Compared with active de-icing methods, the passive method has advantages of low energy consumption, low cost, and environmental friendliness. The realization of low ice adhesion is mainly related to low surface energy, interface slippage, and crack initiation. According to the realization mechanism, low  ice  adhesion  surfaces  can  be  divided  into  low  surface  energy  surfaces,  lubricated  surfaces,  interfacial  slippage  and  low  shear modulus  surfaces,  and  crack  initiators  surfaces.  The  design  principles  and  mechanism  of  the  de-icing  surface  are  explored  and 收稿日期: 2021−01−14 基金项目: 湖南省自然科学基金资助项目(2021JJ30028) 工程科学学报,第 43 卷,第 10 期:1413−1424,2021 年 10 月 Chinese Journal of Engineering, Vol. 43, No. 10: 1413−1424, October 2021 https://doi.org/10.13374/j.issn2095-9389.2021.01.14.008; http://cje.ustb.edu.cn
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有