正在加载图片...
868 工程科学学报,第42卷,第7期 2016,34(3):127 (游佳迪,杨弋涛,张洪奎,等.C5钢锭去氢退火过程的数学模 [2]Hu Z H.Improvement of hydrogen removal from 120 t VD.Mer 拟.上海金属,2011,33(1):59) Mater Metall Eng,2014,42(2):36 [15]Tan T Y,Du F S,Li J,et al.Finite element analysis of hydrogen (胡振华.改善120tVD脱氢效果的研究.金属材料与冶金工程, diffusion in large forgings.J Plast Eng,2017,24(1):180 2014,42(2):36) (谭天宇,杜凤山,李杰,等.大型锻件中氢扩散的研究.塑性工 [3] Chen A M.A study on 210 t RH vacuum degas process at a sheet 程学报,2017,24(1):180) works.Special Steel,2012,33(6):16 [16]Yang D,Xu S P,Huang H Q,et al.Numerical simulation of (陈爱梅.薄板厂210tRH脱气工艺研究.特殊钢,2012,33(6): hydrogen diffusion in steel plate.Res Iron Steel,2016,44(1):19 16) (杨东,许少普,黄红乾,等,钢板中氢扩散的数值模拟.钢铁研 [4]Zhu B H,Chattopadhyay K.Hu X P,et al.Optimization of 究,2016,44(1):19) sampling location in the ladle during RH vacuum refining process. [17]Wang W H,Li Z J,Chu R S,et al.Hydrogen diffusion in slab for Vacuum,2018,152:30 stacking slow-cooling.Iron Steel,2019,54(11):49 [5]Ling HT,Zhang L F.Numerical simulation of gas and liquid two- (王卫华,李战军,初仁生,等.堆冷方式下板坯氢扩散效果.钢 phase flow in the RH process.Metall Mater Trans B.2019.50(4): 铁,2019,54(11):49) 2017 [18]Tao P,Gong J M,Wang Y F,et al.Modeling of hydrogen [6]Mukherjee D.Shukla A K,Senk D.Prediction of decarburisation diffusion in duplex stainless steel based on microstructure using process along with hydrogen and nitrogen removal by finite element method.Int J Pressure Vessels Piping,2020,180: mathematical modelling of RH degassing process.Ironmaking 104031 Steelmaking,2018,45(5):412 [19]Sezgin J G,Bosch C,Montouchet A,et al.Modelling and [7]Chen G J,He S P.Circulation flow rate and decarburization in the simulation of hydrogen redistribution in a heterogeneous alloy RH degasser under low atmospheric pressure.Vacuum,2018,153: during the cooling down to 200 C.Int J Hydrogen Energy,2017, 132 42(30):19346 [8] Wei J H.Mathematical modeling of the vacuum circulation [20]Yan C Y.Liu C Y,Yan B.3D modeling of the hydrogen refining process of molten steel.J Shanghai Univ,2003,7(2):97 distribution inXpipeline steel welded joints.Compu Mater Sci, [9] Bucur L,Bucur G,Moise A G,et al.Finite element method 2014,83:158 applied to mathematical modelling of the hydrogen diffusion [1]Li L F,Song B.Cai Z Y.et al.Effect of vanadium content on process in metals.Rev Chim,2016,67(1):87 hydrogen diffusion behaviors and hydrogen induced ductility loss [10]Zhang FC.Zhang X S.LiC F,et al.First-principles calculations of X80 pipeline steel.Mater Sci Eng 4,019,742:712 on the diffusion behaviors of hydrogen atom in a-Fe and y-Fe. [22]llin D N,Saintier N,Olive J M,et al.Simulation of hydrogen 41 om Mol Phys,2020,37(3):397 diffusion affected by stress-strain heterogeneity in polycrystalline (张凤春,张小山,李春福,等.a-Fe和y-Fe中氢扩散行为的第一 stainless steel.Int J Hydrogen Energy,2014,39(5):2418 性原理计算.原子与分子物理学报,2020,37(3):397) [23]Jiang P,Yuan T X,Chen W X,et al.Microstructure and [11]Liu X K,Wang J J,Lu M X,et al.An analysisof hydrogen mechanical properties of V-Ti-Ni alloy for hydrogen separation diffusion process in metals by boundary element analysis.Xi'an with heat treatment process.Chin J Rare Met,2018,42(12):1260 Petrol Inst,1992,7(1):24 (江鹏,袁同心,肖思进,等.热处理工艺对VTN氢分离合金显 (刘晓坤,王建军,路民旭,等.金属内氢扩散过程的边界元分析 微组织和硬度的影响.稀有金属,2018,42(12):1260) 西安石油学院学报,1992,7(1):24) [24]Cui L,Gao Y,Gu C S,et al.Effect of trace element Cr on [12]Tao P,Wang Y F,Gong J M,et al.Simulation of hydrogen microstructures and properties of welded joints of marine diffusion in duplex stainless steel.J Shanghai Jiaotong Univ, corrosion resisting steels.J Beijing Univ Technol,2018,44(6): 2018,52(9):1086 953 (陶平,王艳飞,巩建鸣,等.氢在双相不锈钢中的扩散模拟.上 (雀丽,高艳,顾长石,等.微量元素C对船用耐蚀钢焊接接头组 海交通大学学报,2018,52(9):1086) 织和性能的影响.北京工业大学学报,2018,44(6):953) [13]Fan J K,Hou G J,Peng B,et al.Activation and diffusion model of [25]Olden V,Saai A,Jemblie L,et al.FE simulation of hydrogen hydrogen in steel under microcosmic condition and its influencing diffusion in duplex stainless steel.InHydrogen Energy,2014. factors.Heat Treat Met,2019,44(3):197 39(2):1156 (范俊错,侯高杰,彭波,等.微观视域下钢内氢的温度激发扩散 [26]Xian A P,Li P J,Chen W X,et al.Hydrogen escape form heavy 模型及影响因素.金属热处理,2019,44(3):197) rail steel bloom by stack cooling at Panzhihua iron and steel [14]You J D.Yang Y T,Zhang H K.et al.Numerical simulation to company.Acta Metall Sinica,1993,29(6):A273 dehydrogenation annealing process of Cr5 steel.Shanghai Met, (洗爱平,李培基,陈文绣,等,攀钢重轨钢初轧坯堆冷的除氢效 2011,33(1):59 果.金属学报,1993.29(6):A273)2016, 34(3): 127 Hu Z H. Improvement of hydrogen removal from 120 t VD. Met Mater Metall Eng, 2014, 42(2): 36 (胡振华. 改善120 t VD脱氢效果的研究. 金属材料与冶金工程, 2014, 42(2):36) [2] Chen A M. A study on 210 t RH vacuum degas process at a sheet works. Special Steel, 2012, 33(6): 16 (陈爱梅. 薄板厂210 t RH脱气工艺研究. 特殊钢, 2012, 33(6): 16) [3] Zhu  B  H,  Chattopadhyay  K,  Hu  X  P,  et  al.  Optimization  of sampling location in the ladle during RH vacuum refining process. Vacuum, 2018, 152: 30 [4] Ling H T, Zhang L F. Numerical simulation of gas and liquid two￾phase flow in the RH process. Metall Mater Trans B, 2019, 50(4): 2017 [5] Mukherjee D, Shukla A K, Senk D. Prediction of decarburisation process  along  with  hydrogen  and  nitrogen  removal  by mathematical  modelling  of  RH  degassing  process. Ironmaking Steelmaking, 2018, 45(5): 412 [6] Chen G J, He S P. Circulation flow rate and decarburization in the RH degasser under low atmospheric pressure. Vacuum, 2018, 153: 132 [7] Wei  J  H.  Mathematical  modeling  of  the  vacuum  circulation refining process of molten steel. J Shanghai Univ, 2003, 7(2): 97 [8] Bucur  L,  Bucur  G,  Moise  A  G,  et  al.  Finite  element  method applied  to  mathematical  modelling  of  the  hydrogen  diffusion process in metals. Rev Chim, 2016, 67(1): 87 [9] Zhang F C, Zhang X S, Li C F, et al. First-principles calculations on the diffusion behaviors of hydrogen atom in α-Fe and γ-Fe. J Atom Mol Phys, 2020, 37(3): 397 (张凤春, 张小山, 李春福, 等. α-Fe和γ-Fe中氢扩散行为的第一 性原理计算. 原子与分子物理学报, 2020, 37(3):397) [10] Liu  X  K,  Wang  J  J,  Lu  M  X,  et  al.  An  analysisof  hydrogen diffusion process in metals by boundary element analysis. J Xi'an Petrol Inst, 1992, 7(1): 24 (刘晓坤, 王建军, 路民旭, 等. 金属内氢扩散过程的边界元分析. 西安石油学院学报, 1992, 7(1):24) [11] Tao  P,  Wang  Y  F,  Gong  J  M,  et  al.  Simulation  of  hydrogen diffusion  in  duplex  stainless  steel. J Shanghai Jiaotong Univ, 2018, 52(9): 1086 (陶平, 王艳飞, 巩建鸣, 等. 氢在双相不锈钢中的扩散模拟. 上 海交通大学学报, 2018, 52(9):1086) [12] Fan J K, Hou G J, Peng B, et al. Activation and diffusion model of hydrogen in steel under microcosmic condition and its influencing factors. Heat Treat Met, 2019, 44(3): 197 (范俊锴, 侯高杰, 彭波, 等. 微观视域下钢内氢的温度激发扩散 模型及影响因素. 金属热处理, 2019, 44(3):197) [13] You  J  D,  Yang  Y  T,  Zhang  H  K,  et  al.  Numerical  simulation  to dehydrogenation  annealing  process  of  Cr5  steel. Shanghai Met, 2011, 33(1): 59 [14] (游佳迪, 杨弋涛, 张洪奎, 等. Cr5钢锭去氢退火过程的数学模 拟. 上海金属, 2011, 33(1):59) Tan T Y, Du F S, Li J, et al. Finite element analysis of hydrogen diffusion in large forgings. J Plast Eng, 2017, 24(1): 180 (谭天宇, 杜凤山, 李杰, 等. 大型锻件中氢扩散的研究. 塑性工 程学报, 2017, 24(1):180) [15] Yang  D,  Xu  S  P,  Huang  H  Q,  et  al.  Numerical  simulation  of hydrogen diffusion in steel plate. Res Iron Steel, 2016, 44(1): 19 (杨东, 许少普, 黄红乾, 等. 钢板中氢扩散的数值模拟. 钢铁研 究, 2016, 44(1):19) [16] Wang W H, Li Z J, Chu R S, et al. Hydrogen diffusion in slab for stacking slow-cooling. Iron Steel, 2019, 54(11): 49 (王卫华, 李战军, 初仁生, 等. 堆冷方式下板坯氢扩散效果. 钢 铁, 2019, 54(11):49) [17] Tao  P,  Gong  J  M,  Wang  Y  F,  et  al.  Modeling  of  hydrogen diffusion  in  duplex  stainless  steel  based  on  microstructure  using finite  element  method. Int J Pressure Vessels Piping,  2020,  180: 104031 [18] Sezgin  J  G,  Bosch  C,  Montouchet  A,  et  al.  Modelling  and simulation  of  hydrogen  redistribution  in  a  heterogeneous  alloy during the cooling down to 200 ℃. Int J Hydrogen Energy, 2017, 42(30): 19346 [19] Yan  C  Y,  Liu  C  Y,  Yan  B.  3D  modeling  of  the  hydrogen distribution in X80 pipeline steel welded joints. Comput Mater Sci, 2014, 83: 158 [20] Li  L  F,  Song  B,  Cai  Z  Y,  et  al.  Effect  of  vanadium  content  on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel. Mater Sci Eng A, 2019, 742: 712 [21] Ilin  D  N,  Saintier  N,  Olive  J  M,  et  al.  Simulation  of  hydrogen diffusion affected by stress-strain heterogeneity in polycrystalline stainless steel. Int J Hydrogen Energy, 2014, 39(5): 2418 [22] Jiang  P,  Yuan  T  X,  Chen  W  X,  et  al.  Microstructure  and mechanical  properties  of  V-Ti-Ni  alloy  for  hydrogen  separation with heat treatment process. Chin J Rare Met, 2018, 42(12): 1260 (江鹏, 袁同心, 肖思进, 等. 热处理工艺对V-Ti-Ni氢分离合金显 微组织和硬度的影响. 稀有金属, 2018, 42(12):1260) [23] Cui  L,  Gao  Y,  Gu  C  S,  et  al.  Effect  of  trace  element  Cr  on microstructures  and  properties  of  welded  joints  of  marine corrosion  resisting  steels. J Beijing Univ Technol,  2018,  44(6): 953 (崔丽, 高艳, 顾长石, 等. 微量元素Cr对船用耐蚀钢焊接接头组 织和性能的影响. 北京工业大学学报, 2018, 44(6):953) [24] Olden  V,  Saai  A,  Jemblie  L,  et  al.  FE  simulation  of  hydrogen diffusion  in  duplex  stainless  steel. Int J Hydrogen Energy,  2014, 39(2): 1156 [25] Xian A P, Li P J, Chen W X, et al. Hydrogen escape form heavy rail  steel  bloom  by  stack  cooling  at  Panzhihua  iron  and  steel company. Acta Metall Sinica, 1993, 29(6): A273 (冼爱平, 李培基, 陈文绣, 等. 攀钢重轨钢初轧坯堆冷的除氢效 果. 金属学报, 1993, 29(6):A273) [26] · 868 · 工程科学学报,第 42 卷,第 7 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有