一、循环码译码的原理-求循环码的伴随式电路 定理2(定理6.1.1):设s()是r()的伴随式,令f(X=r(X)(mod xn1),则f((X的伴随式s1(=s((modg()。 证明(课本证明不好): r(☒=rn1X0-1+rn-2X02+ +『1X+r0 灯()=n1X0+rn-2X01+ rx2 +rox f(x)= [n-2X-1+「n-3X-2+.+r1X2+roX+rn1 =-rn-1X0 +X灯( +rn-1 =-rn-1(xn-1) +X灯(X) =-rnh(x)g(x)+x (a(x)g(x)+s(x)) =-rn-h(x)g(x)+x a(x)g(X)+xs(x) =(-rnh(x)+x a(x))g(x)+xs(x) s1(X)=f(X≡Xs(X(modg(X)。一、循环码译码的原理----求循环码的伴随式电路 定理2(定理6.1.1):设s(x)是r(x)的伴随式,令f(x)xr(x) (mod x n -1), 则f(x)的伴随式s1 (x)xs(x) (mod g(x))。 证明(课本证明不好): r(x) =rn-1x n-1+ rn-2x n-2 + …. + r1x +r0 xr(x)=rn-1x n + rn-2x n-1 + …. + r1x 2 +r0x f(x) = rn-2x n-1+ rn-3x n-2 + …. + r1x 2 + r0x +rn-1 =-rn-1x n + xr(x) +rn-1 =- rn-1 (xn -1) + xr(x) = - rn-1h(x)g(x) +x (a(x)g(x)+s(x)) = - rn-1h(x)g(x) +x a(x)g(x)+xs(x) = (- rn-1h(x) +x a(x))g(x) +xs(x) s1 (x)f(x) xs(x) (mod g(x))