正在加载图片...
冯茜等:多目标粒子群优化算法研究综述 ·753· optimization algorithm based on three status coordinating [77]Hu W,Yen GG,Luo G C.Many-objective particle swarm searching.Control Decis,2015,30(11):1945 optimization using two-stage strategy and parallel cell coordinate (王学武,薛立卡,顾幸生.三态协调搜索多目标粒子群优化算 system.IEEE Trans Cybern,2017,47(6):1446 法.控制与决策,2015,30(11):1945) [78]Meza J,Espitia H,Montenegro C,et al.MOVPSO:vortex multi- [64]Peng G,Fang Y W.Peng W S,et al.Multi-objective particle objective particle swarm optimization.Appl Soft Comput,2017, optimization algorithm based on sharing-learning and dynamic 52:1042 crowding distance.Optik,2016,127(12):5013 [79]Pan A Q,Tian H J,Wang L,et al.A decomposition-based unified [65]Li J Z,Chen W N,Zhang J,et al.A parallel implementation of evolutionary algorithm for many-objective problems using particle multiobjective particle swarm optimization algorithm based on swarm optimization.Math Problems Eng,2016,2016:6761545 decomposition /l Proceedings of2015 IEEE Symposium Series on [80]Liu X F,Zhan Z H,Gao Y,et al.Coevolutionary particle swarm Computational Intelligence.Cape Town,2015:1310 optimization with bottleneck objective learning strategy for many. [66]Xu G,Yang Y Q,Liu BB,et al.An efficient hybrid multi- objective optimization.IEEE Trans Evol Comput,2019,23(4): objective particle swarm optimization with a multi-objective 587 dichotomy line search.JComput Appl Math,2015,280:310 [81]Aleti A,Moser I.A systematic literature review of adaptive [67]Cheng S X,Zhan H,Shu Z X.An innovative hybrid multi- parameter control methods for evolutionary algorithms.ACM objective particle swarm optimization with or without constraints Comput Surv,2016,49(3):56 handling.Appl Sofi Compul,2016,47:370 [82]Han H G,Lu W,Qiao J F.An adaptive multiobjective particle [68]Yu H,Wang Y J,Chen Q,et al.Multi-objective particle swarm swarm optimization based on multiple adaptive methods.IEEE optimization based on multi-population dynamic cooperation. Trans Cybern,,2017,47(9:2754 Electron Sci Technol,2019,32(10):28 [83]Xia L R,Li R X,Liu Q Y,et al.An adaptive multi-objective (于慧,王宇嘉,陈强,等.基于多种群动态协同的多目标粒子群 particle swarm optimization algorithm based dynamic AHP and its 算法.电子科技,2019,32(10):28) application.Control Decis,2015,30(2):215 [69]Liu R C,Li J X,Fan J,et al.A coevolutionary technique based on (夏立荣,李润学,刘启玉,等.基于动态层次分析的自适应多目 multi-swarm particle swarm optimization for dynamic multi 标粒子群优化算法及其应用.控制与决策,2015,30(2):215) objective optimization.EurJOper Res,2017,261(3):1028 [70]Han HG.Lu W,Zhang L,et al.Adaptive gradient multiobjective [84]Liu Y X,Lu H,Cheng S,et al.An adaptive online parameter particle swarm optimization.IEEE Trans Cybern,2018,48(11): control algorithm for particle swarm optimization based on 3067 reinforcement leaming I Proceedings of the 2019 IEEE Congress [71]Lin QZ,Liu S B,Zhu QL,et al.Particle swarm optimization with on Evolutionary Computation,CEC 2019.Wellington,2019:815 a balanceable fitness estimation for many-objective optimization [85]Hu M Q,Wu T,Weir J D.An adaptive particle swarm problems.IEEE Trans Evol Comput,2018,22(1):32 optimization with multiple adaptive methods.IEEE Trans Evol [72]Hu W,Yen GG.Adaptive multiobjective particle swarm Comput,2013,17(5):705 optimization based on parallel cell coordinate system.IEEE Trans [86]Palafox L,Noman N,Iba H.Reverse engineering of gene Evol Compt,2015,19(1):1 regulatory networks using dissipative particle swarm optimization. [73]Deb K,Jain H.An evolutionary many-objective optimization IEEE Trans Evol Comput,2013,17(4):577 algorithm using reference-point-based nondominated sorting [87]Ding S X,Chen C,Xin B,et al.A bi-objective load balancing approach,Part I:Solving problems with box constraints.IEEE model in a distributed simulation system using NSGA-II and Trans Evol Comput,2014,18(4):577 MOPSO approaches.Appl Soft Comput,2018,63:249 [74]Wu B L,Hu W,Hu J J,et al.Adaptive multiobjective particle [88]Yue C T,Qu B Y,Liang J.A multi-objective particle swarm swarm optimization based on evolutionary state estimation.IEEE optimizer using ring topology for solving multimodal multi- Trans Cybern,2019 objective problems.IEEE Trans Evol Comput,2018,22(5):805 [75]Figueiredo E M N,Ludermir T B,Bastos-Filho C J A.Many [89]Gao H J,Pan D Z.A multi-objective particle swarm optimization objective particle swarm optimization.InfSci,2016,374:115 algorithm with star structure to solve the multi-modal multi- [76]Lin Q Z,Li J Q,Du Z H,et al.A novel multi-objective particle objective problem.Comput Eng Sci,2020,42(8):1472 swarm optimization with multiple search strategies.Eur/Oper (高海军,潘大志.星型结构的多目标粒子群算法求解多模态多 Res,2015,247(3):732 目标问题.计算机工程与科学,2020,42(8):1472)optimization  algorithm  based  on  three  status  coordinating searching. Control Decis, 2015, 30(11): 1945 (王学武, 薛立卡, 顾幸生. 三态协调搜索多目标粒子群优化算 法. 控制与决策, 2015, 30(11):1945) Peng  G,  Fang  Y  W,  Peng  W  S,  et  al.  Multi-objective  particle optimization  algorithm  based  on  sharing-learning  and  dynamic crowding distance. Optik, 2016, 127(12): 5013 [64] Li  J  Z,  Chen  W  N,  Zhang  J,  et  al.  A  parallel  implementation  of multiobjective  particle  swarm  optimization  algorithm  based  on decomposition // Proceedings of 2015 IEEE Symposium Series on Computational Intelligence. Cape Town, 2015: 1310 [65] Xu  G,  Yang  Y  Q,  Liu  B  B,  et  al.  An  efficient  hybrid  multi￾objective  particle  swarm  optimization  with  a  multi-objective dichotomy line search. J Comput Appl Math, 2015, 280: 310 [66] Cheng  S  X,  Zhan  H,  Shu  Z  X.  An  innovative  hybrid  multi￾objective particle swarm optimization with or without constraints handling. Appl Soft Comput, 2016, 47: 370 [67] Yu  H,  Wang  Y  J,  Chen  Q,  et  al.  Multi-objective  particle  swarm optimization  based  on  multi-population  dynamic  cooperation. Electron Sci Technol, 2019, 32(10): 28 (于慧, 王宇嘉, 陈强, 等. 基于多种群动态协同的多目标粒子群 算法. 电子科技, 2019, 32(10):28) [68] Liu R C, Li J X, Fan J, et al. A coevolutionary technique based on multi-swarm  particle  swarm  optimization  for  dynamic  multi￾objective optimization. Eur J Oper Res, 2017, 261(3): 1028 [69] Han H G, Lu W, Zhang L, et al. Adaptive gradient multiobjective particle  swarm  optimization. IEEE Trans Cybern,  2018,  48(11): 3067 [70] Lin Q Z, Liu S B, Zhu Q L, et al. Particle swarm optimization with a  balanceable  fitness  estimation  for  many-objective  optimization problems. IEEE Trans Evol Comput, 2018, 22(1): 32 [71] Hu  W,  Yen  G  G.  Adaptive  multiobjective  particle  swarm optimization based on parallel cell coordinate system. IEEE Trans Evol Comput, 2015, 19(1): 1 [72] Deb  K,  Jain  H.  An  evolutionary  many-objective  optimization algorithm  using  reference-point-based  nondominated  sorting approach,  Part  I:  Solving  problems  with  box  constraints. IEEE Trans Evol Comput, 2014, 18(4): 577 [73] Wu  B  L,  Hu  W,  Hu  J  J,  et  al.  Adaptive  multiobjective  particle swarm optimization based on evolutionary state estimation. IEEE Trans Cybern, 2019 [74] Figueiredo  E  M  N,  Ludermir  T  B,  Bastos-Filho  C  J  A.  Many objective particle swarm optimization. Inf Sci, 2016, 374: 115 [75] Lin Q Z, Li J Q, Du Z H, et al. A novel multi-objective particle swarm  optimization  with  multiple  search  strategies. Eur J Oper Res, 2015, 247(3): 732 [76] Hu  W,  Yen  G  G,  Luo  G  C.  Many-objective  particle  swarm optimization using two-stage strategy and parallel cell coordinate system. IEEE Trans Cybern, 2017, 47(6): 1446 [77] Meza J, Espitia H, Montenegro C, et al. MOVPSO: vortex multi￾objective  particle  swarm  optimization. Appl Soft Comput,  2017, 52: 1042 [78] Pan A Q, Tian H J, Wang L, et al. A decomposition-based unified evolutionary algorithm for many-objective problems using particle swarm optimization. Math Problems Eng, 2016, 2016: 6761545 [79] Liu X F, Zhan Z H, Gao Y, et al. Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many￾objective  optimization. IEEE Trans Evol Comput,  2019,  23(4): 587 [80] Aleti  A,  Moser  I.  A  systematic  literature  review  of  adaptive parameter  control  methods  for  evolutionary  algorithms. ACM Comput Surv, 2016, 49(3): 56 [81] Han  H  G,  Lu  W,  Qiao  J  F.  An  adaptive  multiobjective  particle swarm  optimization  based  on  multiple  adaptive  methods. IEEE Trans Cybern, 2017, 47(9): 2754 [82] Xia  L  R,  Li  R  X,  Liu  Q  Y,  et  al.  An  adaptive  multi-objective particle swarm optimization algorithm based dynamic AHP and its application. Control Decis, 2015, 30(2): 215 (夏立荣, 李润学, 刘启玉, 等. 基于动态层次分析的自适应多目 标粒子群优化算法及其应用. 控制与决策, 2015, 30(2):215) [83] Liu  Y  X,  Lu  H,  Cheng  S,  et  al.  An  adaptive  online  parameter control  algorithm  for  particle  swarm  optimization  based  on reinforcement learning // Proceedings of the 2019 IEEE Congress on Evolutionary Computation, CEC 2019. Wellington, 2019: 815 [84] Hu  M  Q,  Wu  T,  Weir  J  D.  An  adaptive  particle  swarm optimization  with  multiple  adaptive  methods. IEEE Trans Evol Comput, 2013, 17(5): 705 [85] Palafox  L,  Noman  N,  Iba  H.  Reverse  engineering  of  gene regulatory networks using dissipative particle swarm optimization. IEEE Trans Evol Comput, 2013, 17(4): 577 [86] Ding  S  X,  Chen  C,  Xin  B,  et  al.  A  bi-objective  load  balancing model  in  a  distributed  simulation  system  using  NSGA-II  and MOPSO approaches. Appl Soft Comput, 2018, 63: 249 [87] Yue  C  T,  Qu  B  Y,  Liang  J.  A  multi-objective  particle  swarm optimizer  using  ring  topology  for  solving  multimodal  multi￾objective problems. IEEE Trans Evol Comput, 2018, 22(5): 805 [88] Gao H J, Pan D Z. A multi-objective particle swarm optimization algorithm  with  star  structure  to  solve  the  multi-modal  multi￾objective problem. Comput Eng Sci, 2020, 42(8): 1472 (高海军, 潘大志. 星型结构的多目标粒子群算法求解多模态多 目标问题. 计算机工程与科学, 2020, 42(8):1472) [89] 冯    茜等: 多目标粒子群优化算法研究综述 · 753 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有