.752 工程科学学报,第43卷.第6期 [35]Li L,Wang WL,Li W K,et al.A novel ranking-based optimal [50]Liu T Y,Jiao L C,Ma W P,et al.Cultural quantum-behaved guides selection strategy in MOPSO.Procedia Comput Sci,2016, particle swarm optimization for environmental/economic dispatch. 91:1001 Appl Soft Comput,2016,48:597 [36]Tang B W,Zhu Z X,Shin H S,et al.A framework for multi- [51]Pan A Q,Wang L,Guo W A,et al.A diversity enhanced objective optimisation based on a new self-adaptive particle swarm multiobjective particle swarm optimization.Inf Sci,2018,436-437: optimisation algorithm.Inf Sci,2017,420:364 441 [37]Yang S X,Li M Q,Liu X H,et al.A grid-based evolutionary [52]Li L,Wang W L,Xu X L.Multi-objective particle swarm algorithm for many-objective optimization.IEEE Trans Evol optimization based on global margin ranking.Inf Sci,2016,375: Comput,2013,17(5:721 30 [38]Feng Q,Li Q,Chen P,et al.Multiobjective particle swarm [53]Cheng T L,Chen M Y,Fleming P J,et al.A novel hybrid teaching optimization algorithm based on adaptive angle division.IEEE learning based multi-objective particle swarm optimization 4 ccess,.2019,7:87916 Neurocomputing.2017,222:11 [39]Zhan Z H,LiJJ,Cao JN.et al.Multiple populations for multiple [54]Yu J P,Wang W,Wu G F,et al.Game mechanism based multi- objectives:A coevolutionary technique for solving multiobjective objective particle swarm optimization.Compur Eng Des,2020, optimization problems.IEEE Trans Cybern,2013,43(2):445 41(4):964 [40]Depolli M,Trobec R,Filipic B.Asynchronous master-slave (喻金平,王伟,巫光福,等.基于博弈机制的多目标粒子群优化 parallelization of differential evolution for multi-objective 算法.计算机工程与设计,2020,41(4):964) optimization.Evol Comput,2013,21(2):261 [55]Zhang X Y,Zheng X T,Cheng R,et al.A competitive mechanism [41]Yang Y C,Zhang T X,Yi W,et al.Deployment of multistatic based multi-objective particle swarm optimizer with fast radar system using multi-objective particle swarm optimisation. convergence.Inf Sci,2018,427:63 IET Radar Sonar Navig,2018,12(5):485 [56]Coello C A C,Pulido G T,Lechuga M S.Handling multiple [42]Luo J G.Qi Y T,Xie J C.et al.A hybrid multi-objective PSO- objectives with particle swarm optimization.IEEE Trans Evol EDA algorithm for reservoir flood control operation.App/Soft Comput,2004,8(3):256 Comput,2015,34:526 [57]Zhan Z H,Zhang J,Li Y,et al.Adaptive particle swarm [43]Yao GS,Ding YS,Jin YC,et al.Endocrine-based coevolutionary optimization.IEEE Trans Syst Man Cybern Part B Cybern,2009. multi-swarm for multi-objective workflow scheduling in a cloud 39(6):1362 system.Sofi Comput,2017,21(15):4309 [58]Peng G,Fang Y W,Chai D,et al.Multi-objective particle swarm [44]Zhang WZ.Li GQ.Zhang WW.et al.A cluster based PSO with optimization algorithm based on sharing-learning and Cauchy leader updating mechanism and ring-topology for multimodal mutation ll Proceedings of the 35th Chinese Control Conference multi-objective optimization.Swarm Evol Comput,2019,50: Chengdu,2016:9155 100569 [59]Zhang W,Huang W M.Multi-strategy adaptive multi-objective [45]Liang J,Guo QQ.Yue C T,et al.A self-organizing multi- particle swarm optimization algorithm based on swarm partition objective particle swarm optimization algorithm for multimodal [J/OL.Acta Autom Sin,(2020-09-16)[2020-10-31].http/ks. multi-objective problems /International Conference on Swarm cnki.net/kems/detail/11.2109.TP.20200915.0941.002.html Intelligence.Shanghai,2018:550 (张伟,黄卫民.基于种群分区的多策略自适应多目标粒子群算 [46]Huang P Q,Liu J C,Tan S B,et al.Application of the hybrid 法[J/0L].自动化学报(2020-09-16)2020-10-31】.http:/kns.cnki. multi-objective particle swarm optimization algorithm in load net/kcms/detail/11.2109.TP.20200915.0941.002.html) distribution of hot finishing mills.Control Theory Appl,2017, [60]Yang J M,Ma MM,Che H J,et al.Multi-objective adaptive 34(1):93 chaotic particle swarm optimization algorithm.Control Decis, (黄佩秋,刘建昌,谭树彬,等.混合多目标粒子群优化算法在热 2015,30(12:2168 精轧负荷分配优化中的应用.控制理论与应用,2017,34(1): (杨景明,马明明,车海军,等.多目标自适应混沌粒子群优化算 93) 法.控制与决策,2015,30(12):2168) [47]Dai C,Wang Y P,Ye M.A new multi-objective particle swarm [61]Han M,He Y.Adaptive multi-objective particle swarm optimization algorithm based on decomposition.Inf Sci,2015,325 optimization with Gaussian chaotic mutation and elite learning. 541 Control Decis,2016,31(8):1372 [48]Qi Y T,Ma X L,Liu F,et al.MOEA/D with adaptive weight (韩敏,何泳.基于高斯混沌变异和精英学习的自适应多目标粒 adjustment.Evol Comput,2014,22(2):231 子群算法.控制与决策,2016,31(8):1372) [49]Albaity H,Meshoul S,Kaban A.On extending quantum behaved [62]Moslemi H,Zandieh M.Comparisons of some improving particle swarm optimization to multiobjective context / strategies on MOPSO for multi-objective(r,Q)inventory system. Proceedings of the 2012 IEEE Congress on Evolutionary Expert Syst4ppl,2011,38(10):12051 Computation,CEC 2012.Brisbane,2012:1 [63]Wang X W,Xue L K,Gu X S.Multi-objective particle swarmLi L, Wang W L, Li W K, et al. A novel ranking-based optimal guides selection strategy in MOPSO. Procedia Comput Sci, 2016, 91: 1001 [35] Tang B W, Zhu Z X, Shin H S, et al. A framework for multiobjective optimisation based on a new self-adaptive particle swarm optimisation algorithm. Inf Sci, 2017, 420: 364 [36] Yang S X, Li M Q, Liu X H, et al. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput, 2013, 17(5): 721 [37] Feng Q, Li Q, Chen P, et al. Multiobjective particle swarm optimization algorithm based on adaptive angle division. IEEE Access, 2019, 7: 87916 [38] Zhan Z H, Li J J, Cao J N, et al. Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems. IEEE Trans Cybern, 2013, 43(2): 445 [39] Depolli M, Trobec R, Filipič B. Asynchronous master-slave parallelization of differential evolution for multi-objective optimization. Evol Comput, 2013, 21(2): 261 [40] Yang Y C, Zhang T X, Yi W, et al. Deployment of multistatic radar system using multi-objective particle swarm optimisation. IET Radar Sonar Navig, 2018, 12(5): 485 [41] Luo J G, Qi Y T, Xie J C, et al. A hybrid multi-objective PSOEDA algorithm for reservoir flood control operation. Appl Soft Comput, 2015, 34: 526 [42] Yao G S, Ding Y S, Jin Y C, et al. Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system. Soft Comput, 2017, 21(15): 4309 [43] Zhang W Z, Li G Q, Zhang W W, et al. A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization. Swarm Evol Comput, 2019, 50: 100569 [44] Liang J, Guo Q Q, Yue C T, et al. A self-organizing multiobjective particle swarm optimization algorithm for multimodal multi-objective problems // International Conference on Swarm Intelligence. Shanghai, 2018: 550 [45] Huang P Q, Liu J C, Tan S B, et al. Application of the hybrid multi-objective particle swarm optimization algorithm in load distribution of hot finishing mills. Control Theory Appl, 2017, 34(1): 93 (黄佩秋, 刘建昌, 谭树彬, 等. 混合多目标粒子群优化算法在热 精轧负荷分配优化中的应用. 控制理论与应用, 2017, 34(1): 93) [46] Dai C, Wang Y P, Ye M. A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci, 2015, 325: 541 [47] Qi Y T, Ma X L, Liu F, et al. MOEA/D with adaptive weight adjustment. Evol Comput, 2014, 22(2): 231 [48] Albaity H, Meshoul S, Kaban A. On extending quantum behaved particle swarm optimization to multiobjective context // Proceedings of the 2012 IEEE Congress on Evolutionary Computation, CEC 2012. Brisbane, 2012: 1 [49] Liu T Y, Jiao L C, Ma W P, et al. Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch. Appl Soft Comput, 2016, 48: 597 [50] Pan A Q, Wang L, Guo W A, et al. A diversity enhanced multiobjective particle swarm optimization. Inf Sci, 2018, 436-437: 441 [51] Li L, Wang W L, Xu X L. Multi-objective particle swarm optimization based on global margin ranking. Inf Sci, 2016, 375: 30 [52] Cheng T L, Chen M Y, Fleming P J, et al. A novel hybrid teaching learning based multi-objective particle swarm optimization. Neurocomputing, 2017, 222: 11 [53] Yu J P, Wang W, Wu G F, et al. Game mechanism based multiobjective particle swarm optimization. Comput Eng Des, 2020, 41(4): 964 (喻金平, 王伟, 巫光福, 等. 基于博弈机制的多目标粒子群优化 算法. 计算机工程与设计, 2020, 41(4):964) [54] Zhang X Y, Zheng X T, Cheng R, et al. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf Sci, 2018, 427: 63 [55] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput, 2004, 8(3): 256 [56] Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern, 2009, 39(6): 1362 [57] Peng G, Fang Y W, Chai D, et al. Multi-objective particle swarm optimization algorithm based on sharing-learning and Cauchy mutation // Proceedings of the 35th Chinese Control Conference. Chengdu, 2016: 9155 [58] Zhang W, Huang W M. Multi-strategy adaptive multi-objective particle swarm optimization algorithm based on swarm partition [J/OL]. Acta Autom Sin, (2020-09-16) [2020-10-31]. http://kns. cnki.net/kcms/detail/11.2109.TP.20200915.0941.002.html ( 张伟, 黄卫民. 基于种群分区的多策略自适应多目标粒子群算 法[J/OL]. 自动化学报(2020-09-16) [2020-10-31]. http://kns.cnki. net/kcms/detail/11.2109.TP.20200915.0941.002.html) [59] Yang J M, Ma M M, Che H J, et al. Multi-objective adaptive chaotic particle swarm optimization algorithm. Control Decis, 2015, 30(12): 2168 (杨景明, 马明明, 车海军, 等. 多目标自适应混沌粒子群优化算 法. 控制与决策, 2015, 30(12):2168) [60] Han M, He Y. Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation and elite learning. Control Decis, 2016, 31(8): 1372 (韩敏, 何泳. 基于高斯混沌变异和精英学习的自适应多目标粒 子群算法. 控制与决策, 2016, 31(8):1372) [61] Moslemi H, Zandieh M. Comparisons of some improving strategies on MOPSO for multi-objective (r, Q) inventory system. Expert Syst Appl, 2011, 38(10): 12051 [62] [63] Wang X W, Xue L K, Gu X S. Multi-objective particle swarm · 752 · 工程科学学报,第 43 卷,第 6 期