正在加载图片...
冯茜等:多目标粒子群优化算法研究综述 .751· structural design.Int J Numer Methods Eng,1990,30(6):1213 [22]Wu B L.Hu W.He Z N.et al.A many-objective particle swarm [7]Liu Q,Liu Q,Yang J P,et al.Progress of research on optimization based on virtual Pareto front /Proceedings of the steelmaking-continuous casting production scheduling.Chin/ 2018 IEEE Congress on Evolutionary Computation,CEC 2018. Eng,2020,42(2):144 Rio de Janeiro,2018:1 (刘青,刘倩,杨建平,等.炼钢-连铸生产调度的研究进展.工程 [23]Li F,Liu J C,Tan S B,et al.R2-MOPSO:A multi-objective 科学学报,2020,42(2):144) particle swarm optimizer based on R2-indicator and decompositi- [8]Li F.Liu J C,Shi H T.et al.Multi-objective particle swarm on II Proceedings of the 2015 IEEE Congress on Evolutionary optimization algorithm based on decomposition and differential Computation.CEC2015.Sendai,2015:3148 evolution.Control Decis,2017,32(3):403 [24]Liu W Y,Xie C,Wen J,et al.Optimization of transmission (李飞,刘建昌,石怀涛,等.基于分解和差分进化的多目标粒子 network maintenance scheduling based on niche multi-objective 群优化算法.控制与决策,2017,32(3):403) particle swarm algorithm.Proc Chin Soc Electr Eng,2013,33(4): [9]Zhang Y,Cheng S,Shi Y H,et al.Cost-sensitive feature selection 141 using two-archive multi-objective artificial bee colony algorithm. (刘文颖,谢昶,文品,等.基于小生境多目标粒子群算法的输电 Expert Syst Appl,2019,137:46 网检修计划优化.中国电机工程学报,2013,33(4):141) [10]Sani SS,Manthouri M,Farivar F.A multi-objective ant colony [25]Qu B Y,Li C.Liang J.et al.A self-organized speciation based optimization algorithm for community detection in complex multi-objective particle swarm optimizer for multimodal multi- networks.J Ambient Intell Human Comput,2020,11(1):5 objective problems.App/Sofi Comput,2020,86:105886 [11]Qiao J F,Li F,Yang S X,et al.An adaptive hybrid evolutionary [26]Li J P,Balazs M E,Parks G T,et al.Erratum:a species conserving immune multi-objective algorithm based on uniform distribution genetic algorithm for multimodal function optimization.Eyol selection.Inf Sci,2020,512:446 Comp4,2003,11(1):107 [12]Lin Q Z,Ma Y P,Chen J Y,et al.An adaptive immune-inspired [27]Wang X W,Min Y,Gu X S.Multi-objective particle swarm multi-objective algorithm with multiple differential evolution optimization algorithm based on density clustering.J East China strategies.Inf Sci,2018,430-431:46 Univ Sci Technol Nat Sci Ed,2019,45(3):449 [13]Kennedy J,Eberhart R.Particle swarm optimization//Proceeding (王学武,闵永,顾幸生,基于密度聚类的多目标粒子群优化算 of ICNN95-IEEE International Conference on Neural Nenworks. 法.华东理工大学学报(自然科学版),2019,45(3):449) Perth,1995:1942 [28]Yu H B,Tan Y,Zeng J C,et al.Surrogate-assisted hierarchical [14]van den Bergh F.An Analysis of Particle Swarm Optimizers particle swarm optimization.Inf Sci,2018,454-455:59 [Dissertation].Pretoria:University of Pretoria,2001 [29]Lu Z M,Wang LQ.Han Z Y.et al.Surrogate-assisted particle [15]Coello CA C.Lechuga M S.MOPSO:A proposal for multiple swarm optimization algorithm with Pareto active learning for objective particle swarm optimization Proceedings of the 2002 expensive multi-objective optimization.IEEE/Sin, Congress on Evolutionary Computation.Honolulu,2002:1051 2019,6(3):838 [16]Zhu Q L,Lin Q Z,Chen W N,et al.An external archive-guided [30]Liu J C,Li F,Kong X Y,et al.Handling many-objective multiobjective particle swarm optimization algorithm./EEE Trans optimisation problems with R2 indicator and decomposition-based Cybern,2017,47(9):2794 particle swarm optimiser.Int/Syst Sci,2019,50(2):320 [17]Li X,Li X L,Wang K,et al.A multi-objective particle swarm [31]Gomez R H,Coello C A C.Improved metaheuristic based on the optimization algorithm based on enhanced selection./EEE Access, R2 indicator for many-objective optimization /GECCO 15- 2019,7:168091 Proceedings of the 2015 Annual Conference on Genetic and [18]Ali H,Khan F A.Attributed multi-objective comprehensive Evolutionary Computation.New York,2015:679 learning particle swarm optimization for optimal security of [32]Li F,Wu Z H,Liu K R,et al.R2 indicator and objective space networks.Appl Soft Comput,2013,13(9):3903 partition based many-objective particle swarm optimizer.Control [19]Cheng S,Chen M Y,Fleming P J.Improved multi-objective Decis,https://doi.org/10.13195/j.kzyjc.2020.0113 particle swarm optimization with preference strategy for optimal (李飞,吴紫恒,刘阙蓉,等.基于R2指标和目标空间分解的高维 DG integration into the distribution system.Neurocomputing, 多目标粒子群优化算法.控制与决策,https:ldoi.org10. 2015,148:23 13195j.kzyjc.2020.0113) [20]Garcia I C,Coello C A C,Arias-Montano A.MOPSOhv:A new [33]Sun X Y,Chen Y,Liu Y P,et al.Indicator-based set evolution hypervolume-based multi-objective particle swarm optimizer / particle swarm optimization for many-objective problems.Soft Proceedings of the 2014 IEEE Congress on Evolutionary Comput,2016,20(6):2219 Computation,CEC 2014.Beijing,2014:266 [34]Moubayed N A,Petrovski A,McCall J.D'MOPSO:MOPSO [21]Wei L X,Li X,Fan R,et al.A hybrid multiobjective particle based on decomposition and dominance with archiving using swarm optimization algorithm based on R2 indicator./EEE crowding distance in objective and solution spaces.Evol Comput, Acce,2018,6:14710 2014.22(1):47structural design. Int J Numer Methods Eng, 1990, 30(6): 1213 Liu  Q,  Liu  Q,  Yang  J  P,  et  al.  Progress  of  research  on steelmaking ‒continuous  casting  production  scheduling. Chin J Eng, 2020, 42(2): 144 (刘青, 刘倩, 杨建平, 等. 炼钢‒连铸生产调度的研究进展. 工程 科学学报, 2020, 42(2):144) [7] Li  F,  Liu  J  C,  Shi  H  T,  et  al.  Multi-objective  particle  swarm optimization  algorithm  based  on  decomposition  and  differential evolution. Control Decis, 2017, 32(3): 403 (李飞, 刘建昌, 石怀涛, 等. 基于分解和差分进化的多目标粒子 群优化算法. 控制与决策, 2017, 32(3):403) [8] Zhang Y, Cheng S, Shi Y H, et al. Cost-sensitive feature selection using  two-archive  multi-objective  artificial  bee  colony  algorithm. Expert Syst Appl, 2019, 137: 46 [9] Sani  S  S,  Manthouri  M,  Farivar  F.  A  multi-objective  ant  colony optimization  algorithm  for  community  detection  in  complex networks. J Ambient Intell Human Comput, 2020, 11(1): 5 [10] Qiao J F, Li F, Yang S X, et al. An adaptive hybrid evolutionary immune  multi-objective  algorithm  based  on  uniform  distribution selection. Inf Sci, 2020, 512: 446 [11] Lin Q Z, Ma Y P, Chen J Y, et al. An adaptive immune-inspired multi-objective  algorithm  with  multiple  differential  evolution strategies. Inf Sci, 2018, 430-431: 46 [12] Kennedy  J,  Eberhart  R.  Particle  swarm  optimization//Proceeding of ICNN’95-IEEE International Conference on Neural Networks. Perth, 1995: 1942 [13] van  den  Bergh  F. An Analysis of Particle Swarm Optimizers [Dissertation]. Pretoria: University of Pretoria, 2001 [14] Coello  C  A  C,  Lechuga  M  S.  MOPSO:  A  proposal  for  multiple objective  particle  swarm  optimization  // Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, 2002: 1051 [15] Zhu Q L, Lin Q Z, Chen W N, et al. An external archive-guided multiobjective particle swarm optimization algorithm. IEEE Trans Cybern, 2017, 47(9): 2794 [16] Li  X,  Li  X  L,  Wang  K,  et  al.  A  multi-objective  particle  swarm optimization algorithm based on enhanced selection. IEEE Access, 2019, 7: 168091 [17] Ali  H,  Khan  F  A.  Attributed  multi-objective  comprehensive learning  particle  swarm  optimization  for  optimal  security  of networks. Appl Soft Comput, 2013, 13(9): 3903 [18] Cheng  S,  Chen  M  Y,  Fleming  P  J.  Improved  multi-objective particle  swarm  optimization  with  preference  strategy  for  optimal DG  integration  into  the  distribution  system. Neurocomputing, 2015, 148: 23 [19] García I C, Coello C A C, Arias-Montaño A. MOPSOhv: A new hypervolume-based  multi-objective  particle  swarm  optimizer  // Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014. Beijing, 2014: 266 [20] Wei  L  X,  Li  X,  Fan  R,  et  al.  A  hybrid  multiobjective  particle swarm  optimization  algorithm  based  on  R2  indicator. IEEE Access, 2018, 6: 14710 [21] Wu B L, Hu W, He Z N, et al. A many-objective particle swarm optimization  based  on  virtual  Pareto  front  // Proceedings of the 2018 IEEE Congress on Evolutionary Computation, CEC 2018. Rio de Janeiro, 2018: 1 [22] Li  F,  Liu  J  C,  Tan  S  B,  et  al.  R2-MOPSO:  A  multi-objective particle swarm optimizer based on R2-indicator and decompositi￾on  // Proceedings of the 2015 IEEE Congress on Evolutionary Computation, CEC 2015. Sendai, 2015: 3148 [23] Liu  W  Y,  Xie  C,  Wen  J,  et  al.  Optimization  of  transmission network  maintenance  scheduling  based  on  niche  multi-objective particle swarm algorithm. Proc Chin Soc Electr Eng, 2013, 33(4): 141 (刘文颖, 谢昶, 文晶, 等. 基于小生境多目标粒子群算法的输电 网检修计划优化. 中国电机工程学报, 2013, 33(4):141) [24] Qu  B  Y,  Li  C,  Liang  J,  et  al.  A  self-organized  speciation  based multi-objective  particle  swarm  optimizer  for  multimodal  multi￾objective problems. Appl Soft Comput, 2020, 86: 105886 [25] Li J P, Balazs M E, Parks G T, et al. Erratum: a species conserving genetic  algorithm  for  multimodal  function  optimization. Evol Comput, 2003, 11(1): 107 [26] Wang  X  W,  Min  Y,  Gu  X  S.  Multi-objective  particle  swarm optimization  algorithm  based  on  density  clustering. J East China Univ Sci Technol Nat Sci Ed, 2019, 45(3): 449 (王学武, 闵永, 顾幸生. 基于密度聚类的多目标粒子群优化算 法. 华东理工大学学报(自然科学版), 2019, 45(3):449) [27] Yu  H  B,  Tan  Y,  Zeng  J  C,  et  al.  Surrogate-assisted  hierarchical particle swarm optimization. Inf Sci, 2018, 454-455: 59 [28] Lü  Z  M,  Wang  L  Q,  Han  Z  Y,  et  al.  Surrogate-assisted  particle swarm  optimization  algorithm  with  Pareto  active  learning  for expensive  multi-objective  optimization. IEEE/CAA J Autom Sin, 2019, 6(3): 838 [29] Liu  J  C,  Li  F,  Kong  X  Y,  et  al.  Handling  many-objective optimisation problems with R2 indicator and decomposition-based particle swarm optimiser. Int J Syst Sci, 2019, 50(2): 320 [30] Gómez R H, Coello C A C. Improved metaheuristic based on the R2  indicator  for  many-objective  optimization  // GECCO 15- Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, 2015: 679 [31] Li  F,  Wu  Z  H,  Liu  K  R,  et  al.  R2  indicator  and  objective  space partition based many-objective particle swarm optimizer. Control Decis, https://doi.org/10.13195/j.kzyjc.2020.0113 ( 李飞, 吴紫恒, 刘阚蓉, 等. 基于R2指标和目标空间分解的高维 多 目 标 粒 子 群 优 化 算 法 .  控 制 与 决 策 , https://doi.org/10. 13195/j.kzyjc.2020.0113) [32] Sun  X  Y,  Chen  Y,  Liu  Y  P,  et  al.  Indicator-based  set  evolution particle  swarm  optimization  for  many-objective  problems. Soft Comput, 2016, 20(6): 2219 [33] Moubayed  N  A,  Petrovski  A,  McCall  J.  D2MOPSO:  MOPSO based  on  decomposition  and  dominance  with  archiving  using crowding distance in objective and solution spaces. Evol Comput, 2014, 22(1): 47 [34] 冯    茜等: 多目标粒子群优化算法研究综述 · 751 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有