正在加载图片...
14-5简谐运动的能量 第十四章机械振动 以弹簧振子为例 F=-「x=AcoS(m+) 乙=- Ao sin(ot+) Ek=mu=mo sin(@t +o) E=kx=kA cos(at +o) k/m E=E+En=k∝A2(振幅的动力学意义) 2 线性回复力是保守力,作简谐运动的系统机械能守恒14 – 5 简谐运动的能量 第十四章 机械振动 sin ( ) 2 1 2 1 2 2 2 2 Ek = mv = m A t + cos ( ) 2 1 2 1 2 2 2 Ep = k x = k A t + 线性回复力是保守力,作简谐运动的系统机械能守恒 以弹簧振子为例 sin( ) cos( )      = − + = + A t x A t v F = −kx 2 2 k p 2 1 E = E + E = k A  A k / m 2  = (振幅的动力学意义)
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有