正在加载图片...
1628 工程科学学报,第43卷,第12期 cermet anodes /Light Metals.Warrendale,2002:457 Electrochemistry [Dissertation].Wuhan:Wuhan University,2014 [34]Liu J Y,Li Z Y,Tao Y Q,et al.Phase evolution of (汤迪勇.二氧化碳减排及资源化利用的熔盐电化学新技术研 17(Cu-10Ni)-(NiFe2O-10NiO)cermet inert anode during 究学位论文1.武汉:武汉大学,2014) aluminum electrolysis.Trans Nonferrous Met Soc China,2011, [48]Yin H Y,Tang D Y,Zhu H,et al.Production of iron and oxygen 21(3):566 in molten K2CO;-NazCO3 by electrochemically splitting Fe2O [35]Yu X J,Zhang G L,Qiu Z X,et al.Electrical conductivity and using a cost affordable inert anode.Electrochem Commun,2011, corrosion resistance of ZnFe2O-based materials used as intert 13(12):1521 anode for aluminum electrolysis.J Shanghai Univ (Engl Ed), [49]Tang D Y,Zheng K Y,Yin H Y,et al.Electrochemical growth of 1999,3(3:251 a corrosion-resistant multi-layer scale to enable an oxygen- [36]Yu X J,Qiu Z X,Jin S Z.Corrosion of zinc ferrite in evolution inert anode in molten carbonate.Electrochimica Acta, NaF-AIF:-Al2O:molten salts.J Chin Soc Corros Prot,2000, 2018,279:250 20(5):275 [50]Dou Y P.Tang DY,Yin H Y,et al.Electrochemical preparation (于先进,邱竹贤,金松哲.ZnFe,O,基材料在NaF-AIF-Al,O熔 of the Fe-Ni36 Invar alloy from a mixed oxides precursor in 盐中的腐蚀.中国腐蚀与防护学报,2000,20(5):275) molten carbonates.Int J Miner Metall Mater,2020,27(12):1695 [37]Du Y.TiB:Anode Process of TiBz in Molten Salt System [51]Tian D H.Wang M Y.Zhou Y P.et al.NioAlo.oCuo.0Feo24 [Dissertation].Beijing:University of Science and Technology metallic inert anode for the electrochemical production of Fe-Ni Beijing,2021 alloy in molten KCO-NaCO3.Metall Mater Trans B,2018, (杜洋.TB2在熔盐体系中的阳极过程[学位论文].北京:北京科 4963424 技大学,2021) [52]Tang D Y,Yin H Y,Mao X H,et al.Effects of applied voltage and [38]Yin H Y,Gao LL,Zhu H,et al.On the development of metallic temperature on the electrochemical production of carbon powders inert anode for molten CaCh-CaO System.Electrochimica Acta from CO2 in molten salt with an inert anode.Electrochimica Acta, 2011,56(9):3296 2013,114:567 [39]Sakamura Y,Kurata M,Inoue T.Electrochemical reduction of [53]Aiken R H.Process of Making Iron from the Ore:US Patent. UO2 in molten CaCl or LiCl.J Electrochem Soc,2006,153(3): 0816142,1906-3-27 D31 [54]Hashimoto Y,Uriya K.Kono R.Electrowinning of titanium from [40]Barnett R,Kilby K T,Fray D J.Reduction of tantalum pentoxide its oxides,Part II.Influences of fluoride salt baths on fused-salt using graphite and tin-oxide-based anodes via the FFC-Cambridge electrodeposition of titanium metal from titanium dioxide.Denki process.Metall Mater Trans B,2009,40(2):150 Kagaku,1971,3912):938 [41]Kilby K T,Jiao S Q,Fray D J.Current efficiency studies for [55]Zhang K,Jiao H D,Zhou Z G,et al.Electrochemical behavior of graphite and SnOz-based anodes for the electro-deoxidation of Fe(III)ion in CaO-MgO-SiOz-Al2O;-NaF-Fe2O:melts at 1673 metal oxides.Electrochimica Acta,2010,55(23):7126 K.J Electrochem Soc,2016,163(13):D710 [42]Jiao S Q,Fray D J.Development of an inert anode for [56]Zhou Z G,Jiao H D,Tu J G,et al.Direct production of Fe and electrowinning in calcium chloride-calcium oxide melts.Metall Fe-Ni alloy via molten oxides electrolysis.J Electrochem Soc, Ma1 er Trans B,2010,41(1):74 2017,164(6):E113 [43]Jiao S Q,Zhang LL,Zhu H M,et al.Production of NiTi shape [57]Zhou Z G,Wang S,Jiao H D,et al.The feasibility of electrolytic memory alloys via electro-deoxidation utilizing an inert anode. preparation of Fe-Ni-Cr alloy in molten oxides system.J Electrochimica Acta,2010,55(23):7016 Electrochem Soc,2017,164(14):D964 [44]Hu L W.Song Y,Ge J B,et al.Electrochemical metallurgy in [58]Xiao W,Zhu H.Yin H Y,et al.Novel molten-salt electrolysis CaClz-Cao melts on the basis of TiOzRuOzInert anode.J processes towards low-carbon metallurgy.J Electrochem,2012, Electrochem Soc,2015,163(3):E33 18(3):193 [45]Ge J B,Zou X L,Almassi S,et al.Electrochemical production of (肖巍,朱华,尹华意,等.熔盐电化学低碳治金新技术研究.电 Si without generation of CO2 based on the use of a dimensionally 化学,2012,18(3):193) stable anode in molten CaCl.Angewandte Chemie Int Ed,2019, [59]Wang D H,Xiao W.Inert anode development for high-temperature 58(45):16223 molten salts.Molten Salts Chemistry,2013:171 [46]Du Y,Kou M Y,Tu J G,et al.An investigation into the anodic [60]Wang D H,Gmitter A J,Sadoway D R.Production of oxygen gas behavior of TiB2 in a CaCl-based molten salt.Corros Sci,2021, and liquid metal by electrochemical decomposition of molten iron 178:109089 oxide.J Electrochem Soc,2011,158(6):E51 [47]Tang D Y.Studies on Technologies for Carbon Dioxide Emissions [61]Kim H,Paramore J,Allanore A,et al.Electrolysis of molten iron Reduction and Resource Utilization Based on Molten Salt oxide with an iridium anode:The role of electrolyte basicity.Jcermet anodes // Light Metals. Warrendale, 2002: 457 Liu  J  Y,  Li  Z  Y,  Tao  Y  Q,  et  al.  Phase  evolution  of 17(Cu–10Ni)–(NiFe2O4–10NiO)  cermet  inert  anode  during aluminum  electrolysis. Trans Nonferrous Met Soc China,  2011, 21(3): 566 [34] Yu  X  J,  Zhang  G  L,  Qiu  Z  X,  et  al.  Electrical  conductivity  and corrosion  resistance  of  ZnFe2O4 -based  materials  used  as  intert anode  for  aluminum  electrolysis. J Shanghai Univ (Engl Ed), 1999, 3(3): 251 [35] Yu  X  J,  Qiu  Z  X,  Jin  S  Z.  Corrosion  of  zinc  ferrite  in NaF–AlF3–Al2O3 molten  salts. J Chin Soc Corros Prot,  2000, 20(5): 275 (于先进, 邱竹贤, 金松哲. ZnFe2O4基材料在NaF–AlF3–Al2O3熔 盐中的腐蚀. 中国腐蚀与防护学报, 2000, 20(5):275) [36] Du  Y. TiB2 Anode Process of TiB2 in Molten Salt System [Dissertation].  Beijing:  University  of  Science  and  Technology Beijing, 2021 ( 杜洋. TiB2在熔盐体系中的阳极过程[学位论文]. 北京: 北京科 技大学, 2021) [37] Yin H Y, Gao L L, Zhu H, et al. On the development of metallic inert  anode  for  molten  CaCl2–CaO  System. Electrochimica Acta, 2011, 56(9): 3296 [38] Sakamura  Y,  Kurata  M,  Inoue  T.  Electrochemical  reduction  of UO2 in molten CaCl2 or LiCl. J Electrochem Soc, 2006, 153(3): D31 [39] Barnett R, Kilby K T, Fray D J. Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge process. Metall Mater Trans B, 2009, 40(2): 150 [40] Kilby  K  T,  Jiao  S  Q,  Fray  D  J.  Current  efficiency  studies  for graphite  and  SnO2 -based  anodes  for  the  electro-deoxidation  of metal oxides. Electrochimica Acta, 2010, 55(23): 7126 [41] Jiao  S  Q,  Fray  D  J.  Development  of  an  inert  anode  for electrowinning  in  calcium  chloride-calcium  oxide  melts. Metall Mater Trans B, 2010, 41(1): 74 [42] Jiao  S  Q,  Zhang  L  L,  Zhu  H  M,  et  al.  Production  of  NiTi  shape memory  alloys via electro-deoxidation  utilizing  an  inert  anode. Electrochimica Acta, 2010, 55(23): 7016 [43] Hu  L  W,  Song  Y,  Ge  J  B,  et  al.  Electrochemical  metallurgy  in CaCl2–CaO  melts  on  the  basis  of  TiO2 ·RuO2 Inert  anode. J Electrochem Soc, 2015, 163(3): E33 [44] Ge J B, Zou X L, Almassi S, et al. Electrochemical production of Si without generation of CO2 based on the use of a dimensionally stable anode in molten CaCl2 . Angewandte Chemie Int Ed, 2019, 58(45): 16223 [45] Du Y, Kou M Y, Tu J G, et al. An investigation into the anodic behavior of TiB2 in a CaCl2 -based molten salt. Corros Sci, 2021, 178: 109089 [46] Tang D Y. Studies on Technologies for Carbon Dioxide Emissions Reduction and Resource Utilization Based on Molten Salt [47] Electrochemistry [Dissertation]. Wuhan: Wuhan University, 2014 ( 汤迪勇. 二氧化碳减排及资源化利用的熔盐电化学新技术研 究[学位论文]. 武汉: 武汉大学, 2014) Yin H Y, Tang D Y, Zhu H, et al. Production of iron and oxygen in  molten  K2CO3–Na2CO3 by  electrochemically  splitting  Fe2O3 using  a  cost  affordable  inert  anode. Electrochem Commun,  2011, 13(12): 1521 [48] Tang D Y, Zheng K Y, Yin H Y, et al. Electrochemical growth of a  corrosion-resistant  multi-layer  scale  to  enable  an  oxygen￾evolution  inert  anode  in  molten  carbonate. Electrochimica Acta, 2018, 279: 250 [49] Dou Y P, Tang D Y, Yin H Y, et al. Electrochemical preparation of  the  Fe–Ni36  Invar  alloy  from  a  mixed  oxides  precursor  in molten carbonates. Int J Miner Metall Mater, 2020, 27(12): 1695 [50] Tian  D  H,  Wang  M  Y,  Zhou  Y  P,  et  al.  Ni0.36Al0.10Cu0.30Fe0.24 metallic  inert  anode  for  the  electrochemical  production  of  Fe –Ni alloy  in  molten  K2CO3–Na2CO3 . Metall Mater Trans B,  2018, 49(6): 3424 [51] Tang D Y, Yin H Y, Mao X H, et al. Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode. Electrochimica Acta, 2013, 114: 567 [52] Aiken  R  H. Process of Making Iron from the Ore:  US  Patent, 0816142, 1906-3-27 [53] Hashimoto Y, Uriya K, Kono R. Electrowinning of titanium from its  oxides,  Part  II.  Influences  of  fluoride  salt  baths  on  fused –salt electrodeposition  of  titanium  metal  from  titanium  dioxide. Denki Kagaku, 1971, 39(12): 938 [54] Zhang K, Jiao H D, Zhou Z G, et al. Electrochemical behavior of Fe(III)  ion  in  CaO–MgO–SiO2–Al2O3–NaF–Fe2O3 melts  at  1673 K. J Electrochem Soc, 2016, 163(13): D710 [55] Zhou  Z  G,  Jiao  H  D,  Tu  J  G,  et  al.  Direct  production  of  Fe  and Fe–Ni  alloy  via  molten  oxides  electrolysis. J Electrochem Soc, 2017, 164(6): E113 [56] Zhou Z G, Wang S, Jiao H D, et al. The feasibility of electrolytic preparation  of  Fe–Ni–Cr  alloy  in  molten  oxides  system. J Electrochem Soc, 2017, 164(14): D964 [57] Xiao  W,  Zhu  H,  Yin  H  Y,  et  al.  Novel  molten-salt  electrolysis processes  towards  low-carbon  metallurgy. J Electrochem,  2012, 18(3): 193 (肖巍, 朱华, 尹华意, 等. 熔盐电化学低碳冶金新技术研究. 电 化学, 2012, 18(3):193) [58] Wang D H, Xiao W. Inert anode development for high-temperature molten salts. Molten Salts Chemistry, 2013: 171 [59] Wang D H, Gmitter A J, Sadoway D R. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J Electrochem Soc, 2011, 158(6): E51 [60] Kim H, Paramore J, Allanore A, et al. Electrolysis of molten iron oxide  with  an  iridium  anode:  The  role  of  electrolyte  basicity. J [61] · 1628 · 工程科学学报,第 43 卷,第 12 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有