正在加载图片...
·1518· 工程科学学报,第37卷,第11期 92 48 剂,应用这种吸附剂在吸附和解吸压力分别为240kPa 和60kPa时,采用排放气和原料气组合充压的快速真 44 88 空变压吸附流程可获得氧体积分数为90%的产品气. (2)采用排放气和原料气组合充压流程可以有效 40 提高产品气氧含量,当循环周期为7.8s时,原料气和 36 排放气组合充压条件下得到的产品气中氧体积分数比 原料气充压条件下提高15.49%. (3)充压前排放气缓冲罐中气体压力和氧含量是 80 影响组合充压的单塔快速真空变压吸附制氧过程中产 78 28 0.6 0.81.01.2 1.4 16 品气氧含量的关键参数 吸附时间s (4)快速变压吸附工艺可有效提高吸附剂产氧 图8吸附时间对产品气氧含量和氧气回收率的影响 率,采用排放气和原料气组合充压的快速真空变压吸 Fig.8 Effect of adsorption time on oxygen concentration in the prod- 附流程的吸附剂产氧率为325.08Lhkg,为传统 uct and oxygen recovery 微型制氧机吸附剂产氧率的3.25倍. 图9为吸附时间对吸附剂产氧率的影响.吸附剂 产氧率V(Lhkg)可按下式计算: 参考文献 V=N-@ Zhang D,Stephenson N A.Development of oxygen selective ad- (2) m sorbents for gas separation and purification.Adsorption,2014,20 式中,N为循环产氧量(L),w为循环频率(s),m为 (1):137 2] 吸附剂量(kg).由图9可以看出,当吸附时间为0.6s Li H Y,Yin W M,Wei Y W,et al.Composition and perform- ance evolution of high efficient LilSX adsorbent for air separation 时,吸附剂产氧率为325.08Lh·kg,随着吸附时 and oxygen production.Acta Pet Sin Pet Process Sect,2009,25 间的增长,吸附剂的产氧率也随之增大,而增大的幅度 (Suppl 2)106 逐渐减小.这是由于随着吸附时间的延长,循环产氧 (李宏愿,尹伟民,魏渝伟,等.高效空分制氧吸附剂SX 量逐渐增大,但循环频率却下降,故吸附剂的产氧率随 的组成和性能评价.石油学报:石油加工,2009,25(增刊 吸附时间增长而增大,但增大的幅度逐渐减小 2):106) 现有的基于传统变压吸附循环的微型制氧机吸附 B]Shi M,Kim J,Sawada JA,et al.Production of argon free oxygen 剂产氧率约为100Lh·kg左右,而当产品气中氧 by adsorptive air separation on Ag-ETS-10.AlChE J,2012,59 (3):982 体积分数为90%,采用排放气和原料气组合充压的快 4] Mofarahi M,TowfighiJ,Fathi L Oxygen separation from air by 速真空变压吸附流程时吸附剂产氧率为325.08Lh1 four-bed pressure swing adsorption.Ind Eng Chem Res,2009,48 kg,为传统微型制氧机吸附剂产氧率的3.25倍,这 (11):5439 充分说明快速变压吸附工艺具有生产率高的优点, [5] Sivakumar S V,Rao D P.Modified Duplex PSA.2.Sharp separa- tion and process intensification for N5A zeolite system.Ind 550 Eng Chem Re=,2011,50(6):3437 [6] Bhatt TS,Sliepcevich A,Storti G,et al.Experimental and mod- 500 eling analysis of dual-reflux pressure swing adsorption process.Ind Eng Chem Res,2014,53(34):13448 450 Zhu X Q,Liu Y S.Yang X,et al.Progress of modified adsorbent 400 and pressure swing adsorption for oxygen production in China. Chem Ind Eng Prog,2015,34(1):19 350 (祝显强,刘应书,杨雄,等.我国变压吸附制氧吸附剂及工 艺研究进展.化工进展,2015,34(1):19) 300 8] Kim Y H,Lee D G,Moon D K,et al.Effect of bed void volume 0.6 0.9 1.2 1.5 1.8 吸附时间⅓ on pressure vacuum swing adsorption for air separation.KoreanJ Chem Eng,2014,31(1):132 图9吸附时间对吸附剂产氧率的影响 [9]Ding L Q,Shu P C.Oxygen enrichment through mini-scale rotary Fig.9 Effect of adsorption time on adsorbent productivity six-bed pressure swing adsorption.Ade Mater Res,2013,726: 780 4 结论 [10]Rao V R,Faroog S.Experimental study of a pulsed pressure (1)找到适合单塔快速真空变压吸附制氧的吸附 swing adsorption process with very small 5A zeolite particles for oxygen enrichment.Ind Eng Chem Res,2014,53(33):13157工程科学学报,第 37 卷,第 11 期 图 8 吸附时间对产品气氧含量和氧气回收率的影响 Fig. 8 Effect of adsorption time on oxygen concentration in the prod￾uct and oxygen recovery 图 9 为吸附时间对吸附剂产氧率的影响. 吸附剂 产氧率 V( L·h - 1·kg - 1 ) 可按下式计算: V = N·ω m . ( 2) 式中,N 为循环产氧量( L) ,ω 为循环频率( s - 1 ) ,m 为 吸附剂量( kg) . 由图 9 可以看出,当吸附时间为 0. 6 s 时,吸附剂产氧率为 325. 08 L·h - 1·kg - 1,随着吸附时 间的增长,吸附剂的产氧率也随之增大,而增大的幅度 逐渐减小. 这是由于随着吸附时间的延长,循环产氧 量逐渐增大,但循环频率却下降,故吸附剂的产氧率随 吸附时间增长而增大,但增大的幅度逐渐减小. 现有的基于传统变压吸附循环的微型制氧机吸附 剂产氧率约为 100 L·h - 1·kg - 1左右,而当产品气中氧 体积分数为 90% ,采用排放气和原料气组合充压的快 速真空变压吸附流程时吸附剂产氧率为 325. 08 L·h - 1 ·kg - 1,为传统微型制氧机吸附剂产氧率的 3. 25 倍,这 充分说明快速变压吸附工艺具有生产率高的优点. 图 9 吸附时间对吸附剂产氧率的影响 Fig. 9 Effect of adsorption time on adsorbent productivity 4 结论 ( 1) 找到适合单塔快速真空变压吸附制氧的吸附 剂,应用这种吸附剂在吸附和解吸压力分别为 240 kPa 和 60 kPa 时,采用排放气和原料气组合充压的快速真 空变压吸附流程可获得氧体积分数为 90% 的产品气. ( 2) 采用排放气和原料气组合充压流程可以有效 提高产品气氧含量,当循环周期为 7. 8 s 时,原料气和 排放气组合充压条件下得到的产品气中氧体积分数比 原料气充压条件下提高 15. 49% . ( 3) 充压前排放气缓冲罐中气体压力和氧含量是 影响组合充压的单塔快速真空变压吸附制氧过程中产 品气氧含量的关键参数. ( 4) 快速变压吸附工艺可有效提高吸附剂产氧 率,采用排放气和原料气组合充压的快速真空变压吸 附流程的吸附剂产氧率为 325. 08 L·h - 1·kg - 1,为传统 微型制氧机吸附剂产氧率的 3. 25 倍. 参 考 文 献 [1] Zhang D,Stephenson N A. Development of oxygen selective ad￾sorbents for gas separation and purification. Adsorption,2014,20 ( 1) : 137 [2] Li H Y,Yin W M,Wei Y W,et al. Composition and perform￾ance evolution of high efficient LiLSX adsorbent for air separation and oxygen production. Acta Pet Sin Pet Process Sect,2009,25 ( Suppl 2) : 106 ( 李宏愿,尹伟民,魏渝伟,等. 高效空分制氧吸附剂 LiLSX 的组成和性能评价. 石油学报: 石油加工,2009,25 ( 增刊 2) : 106) [3] Shi M,Kim J,Sawada J A,et al. Production of argon free oxygen by adsorptive air separation on Ag--ETS--10. AIChE J,2012,59 ( 3) : 982 [4] Mofarahi M,Towfighi J,Fathi L. Oxygen separation from air by four-bed pressure swing adsorption. Ind Eng Chem Res,2009,48 ( 11) : 5439 [5] Sivakumar S V,Rao D P. Modified Duplex PSA. 2. Sharp separa￾tion and process intensification for N2 --O2 --5A zeolite system. Ind Eng Chem Res,2011,50( 6) : 3437 [6] Bhatt T S,Sliepcevich A,Storti G,et al. Experimental and mod￾eling analysis of dual-reflux pressure swing adsorption process. Ind Eng Chem Res,2014,53( 34) : 13448 [7] Zhu X Q,Liu Y S,Yang X,et al. Progress of modified adsorbent and pressure swing adsorption for oxygen production in China. Chem Ind Eng Prog,2015,34( 1) : 19 ( 祝显强,刘应书,杨雄,等. 我国变压吸附制氧吸附剂及工 艺研究进展. 化工进展,2015,34( 1) : 19) [8] Kim Y H,Lee D G,Moon D K,et al. Effect of bed void volume on pressure vacuum swing adsorption for air separation. Korean J Chem Eng,2014,31( 1) : 132 [9] Ding L Q,Shu P C. Oxygen enrichment through mini-scale rotary six-bed pressure swing adsorption. Adv Mater Res,2013,726: 780 [10] Rao V R,Farooq S. Experimental study of a pulsed pressure swing adsorption process with very small 5A zeolite particles for oxygen enrichment. Ind Eng Chem Res,2014,53( 33) : 13157 · 8151 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有