正在加载图片...
罗德强等:有机抑制剂SDD与BX在铜活化闪锌矿表面的竞争吸附机制 .547· 分敏感的特性,在pH为10,SDD用量为4.0×10-5 [8]Huang P,Cao M L,Liu Q.Selective depression of sphalerite by molL的最佳条件下,能够将铜活化闪锌矿的回收 chitosan in differential Ph/Zn flotation.Int Miner Process,2013, 122:29 率降低至16.59%,而黄铜矿的回收率保持在 [9]Jiao F.Fundamental Research on the Efficient Separation of Com- 81.64%. plex Copper-Zine Sulfide Ore by Flotation Dissertation].Chang- (2)Zeta电位测试结果表明:在SDD用量为 sha:Central South University,2013 4×10-5molL-1、BX用量为1×103molL-的条 (焦芬.复杂铜锌硫化矿浮选分离的基础研究[学位论文] 件下,酸性环境中SDD对铜活化闪锌矿的抑制作用 长沙:中南大学,2013) 较小:在碱性环境中SDD能够占据矿物表面的活化 [10]Qin WQ,Jiao F,Sun W,et al.Effects of sodium salt of N,N- 位点并与BX在铜活化闪锌矿表面形成竞争吸附, dimethyldi-thiocarbamate on floatability of chalcopyrite,sphaler- ite,marmatite and its adsorption properties.Colloids Suf A: 从而能够显著地减少矿物表面BX的吸附,进而对 Physicochem Eng Aspects,2013,421:181 铜活化闪锌矿表现出较强的抑制作用. [11]Wang F H,Shi W Y,Wang Z L.Quantum chemiatry study on (3)LEIS(局部交流阻抗)测试结果表明:在碱 six heavy metal ions complexes with dimethyldithiocarbamate. 性环境中,铜活化闪锌矿表面在SDD的作用下可能 Comput Appl Chem,2012,29(6):647 (王风贺,石文艳,王志良.重金属捕集剂二甲基二硫代氨 从铜活化物变为C-SDD,从而占据矿物表面的活 基甲酸对6种重金属整合固化性能的量子化学研究.计算机 化位点,进而阻止BX在铜活闪锌矿表面吸附. 与应用化学,2012,29(6):647) (4)前线轨道计算结果表明:BX、SDD与铜活 [12]Wang W H,Wang C Y,Shen K L.Progresses of electrochemical 化闪锌矿作用时,药剂分子主要的反应活性位点为 corrosion research using SKP and LEIS technology.Mater Prot, S原子,此外通过前线轨道能量分析还看出SDD与 2016,49(12):64 铜活化闪锌矿的△E,(L.103eV)明显小于BX的 (王文和,王昌酉,沈遗领.SKP和LES技术在电化学腐蚀 研究中的应用进展.材料保护,2016,49(12):64) △E,(1.611eV),说明SDD在矿物表面的吸附能力 [13]Li Q D.Ni R,Fan H.Research progress of electrochemical 强于BX,进一步表明该药剂能够有效的抑制铜活化 techniques for measurement of properties of organic coatings.Ma- 闪锌矿. ter Prot,2013,46(7):53 (李全德,倪荣,范华.有机涂层性能电化学测试技术的应 参考文献 用进展.材料保护,2013,46(7):53) [1]Jiao F,Qin WQ,Liu R Z,et al.Adsorption mechanism of 2- [14]Jin T Y,Cheng Y F.In situ characterization by localized electro- mercaptobenzothiazole on chalcopyrite and sphalerite surfaces:Ab chemical impedance spectroscopy of the electrochemical activity initio,and spectroscopy studies.Trans Nonferrous Met Soc China. of microscopic inclusions in an X100 steel.Corros Sci,2011,53 2015,25(7):2388 (2):850 [2]Tian S G.Study on flotation technology of fine refractory copper- [15]Long X H,Chen J H,Chen Y.Adsorption of ethyl xanthate on zine ore.Nonferrous Met Miner Process Sect,2016(6):5 ZnS(110)surface in the presence of water molecules:a DFT (田树国.细粒难选铜锌矿石选矿工艺研究.有色金属(选矿 study.Appl Surf Sci,2016,370:11 部分),2016(6):5) [16]Long X H,Chen Y,Chen J H,et al.The effect of water mole- [3]Zhu Y M,Zhou J,Zhang X F,et al.Experimental study on flota- cules on the thiol collector interaction on the galena(PbS)and tion separation of refractory copper-zinc sulfide ore in Inner Mongo sphalerite (ZnS)surfaces:a DFT study.Appl Surf Sci,2016, lia.Nonferrous Met Miner Process Sect,2014(4):9 389:103 (朱一民,周菁,张晓峰,等.内蒙古某难选铜锌硫化矿浮选 [17]Cao F,Sun C Y,Wang H J,et al.Density functional study on 分离试验研究.有色金属(选矿部分),2014(4):9) the relationship between the electronic structure and flotation per- [4]Liu J,Wen S M,Deng J S,et al.DFT study of ethyl xanthate in- formance of xanthate formates.Chin J Eng,2015,37(7):851 teraction with sphalerite (I 1 0)surface in the absence and pres- (曹飞,孙传尧,王化军,等.黄原酸甲酸酯的电子结构与浮 ence of copper.Appl Surf Sci,2014,311:258 选性能关系的密度泛函研究.工程科学学报,2015,37(7): [5]Liu J,Wen S M,Chen X M,et al.DFT computation of Cu ad- 851) sorption on the S atoms of sphalerite (I 1 0)surface.Miner Eng, [18]Wang J Y,Liu QX,Zeng H B.Understanding copper activation 2013,46-47:1 and xanthate adsorption on sphalerite by time-of-flight secondary [6]Porento M,Hirva P.Effect of copper atoms on the adsorption of ion mass spectrometry,X-ray photoelectron spectroscopy,and in ethyl xanthate on a sphalerite surface.Surf Sci,2005,576(1-3): situ scanning electrochemical microscopy.J Phys Chem C, 98 2013,117(39):20089 [7]Ekmekci Z,Aslan A.Hassoy H.Effects of EDTA on selective flo- [19]Fukui K,Yonezawa T,Nagata C,et al.Molecular orbital theory tation of sulphide minerals.Physicochem Problems Miner Process, of orientation in aromatic,heteroaromatic,and other conjugated 2004,38:79 molecules.J Chem Phys,1954,22(8):1433罗德强等: 有机抑制剂 SDD 与 BX 在铜活化闪锌矿表面的竞争吸附机制 分敏感的特性,在 pH 为 10,SDD 用量为 4郾 0 伊 10 - 5 mol·L - 1的最佳条件下,能够将铜活化闪锌矿的回收 率降 低 至 16郾 59% , 而 黄 铜 矿 的 回 收 率 保 持 在 81郾 64% . (2) Zeta 电位测试结果表明:在 SDD 用量为 4 伊 10 - 5 mol·L - 1 、BX 用量为 1 伊 10 - 5 mol·L - 1的条 件下,酸性环境中 SDD 对铜活化闪锌矿的抑制作用 较小;在碱性环境中 SDD 能够占据矿物表面的活化 位点并与 BX 在铜活化闪锌矿表面形成竞争吸附, 从而能够显著地减少矿物表面 BX 的吸附,进而对 铜活化闪锌矿表现出较强的抑制作用. (3)LEIS(局部交流阻抗)测试结果表明:在碱 性环境中,铜活化闪锌矿表面在 SDD 的作用下可能 从铜活化物变为 Cu鄄鄄 SDD,从而占据矿物表面的活 化位点,进而阻止 BX 在铜活闪锌矿表面吸附. (4)前线轨道计算结果表明: BX、SDD 与铜活 化闪锌矿作用时,药剂分子主要的反应活性位点为 S 原子,此外通过前线轨道能量分析还看出 SDD 与 铜活化闪锌矿的 驻E1 (1郾 103 eV) 明显小于 BX 的 驻E1 (1郾 611 eV),说明 SDD 在矿物表面的吸附能力 强于 BX,进一步表明该药剂能够有效的抑制铜活化 闪锌矿. 参 考 文 献 [1] Jiao F, Qin W Q, Liu R Z, et al. Adsorption mechanism of 2鄄 mercaptobenzothiazole on chalcopyrite and sphalerite surfaces: Ab initio, and spectroscopy studies. Trans Nonferrous Met Soc China, 2015, 25(7): 2388 [2] Tian S G. Study on flotation technology of fine refractory copper鄄 zinc ore. Nonferrous Met Miner Process Sect, 2016(6): 5 (田树国. 细粒难选铜锌矿石选矿工艺研究. 有色金属(选矿 部分), 2016(6): 5) [3] Zhu Y M, Zhou J, Zhang X F, et al. Experimental study on flota鄄 tion separation of refractory copper鄄zinc sulfide ore in Inner Mongo鄄 lia. Nonferrous Met Miner Process Sect, 2014(4): 9 (朱一民, 周菁, 张晓峰, 等. 内蒙古某难选铜锌硫化矿浮选 分离试验研究. 有色金属(选矿部分), 2014(4): 9) [4] Liu J, Wen S M, Deng J S, et al. DFT study of ethyl xanthate in鄄 teraction with sphalerite (1 1 0) surface in the absence and pres鄄 ence of copper. Appl Surf Sci, 2014, 311: 258 [5] Liu J, Wen S M, Chen X M, et al. DFT computation of Cu ad鄄 sorption on the S atoms of sphalerite (1 1 0) surface. Miner Eng, 2013, 46鄄47: 1 [6] Porento M, Hirva P. Effect of copper atoms on the adsorption of ethyl xanthate on a sphalerite surface. Surf Sci, 2005, 576(1鄄3): 98 [7] Ekmek觭i Z, Aslan A, Hassoy H. Effects of EDTA on selective flo鄄 tation of sulphide minerals. Physicochem Problems Miner Process, 2004, 38: 79 [8] Huang P, Cao M L, Liu Q. Selective depression of sphalerite by chitosan in differential Pb / Zn flotation. Int J Miner Process, 2013, 122: 29 [9] Jiao F. Fundamental Research on the Efficient Separation of Com鄄 plex Copper鄄Zinc Sulfide Ore by Flotation [Dissertation]. Chang鄄 sha: Central South University, 2013 (焦芬. 复杂铜锌硫化矿浮选分离的基础研究[学位论文]. 长沙: 中南大学, 2013) [10] Qin W Q, Jiao F, Sun W, et al. Effects of sodium salt of N, N鄄 dimethyldi鄄thiocarbamate on floatability of chalcopyrite, sphaler鄄 ite, marmatite and its adsorption properties. Colloids Surf A: Physicochem Eng Aspects, 2013, 421: 181 [11] Wang F H, Shi W Y, Wang Z L. Quantum chemiatry study on six heavy metal ions complexes with dimethyldithiocarbamate. Comput Appl Chem, 2012, 29(6): 647 (王风贺, 石文艳, 王志良. 重金属捕集剂二甲基二硫代氨 基甲酸对 6 种重金属螯合固化性能的量子化学研究. 计算机 与应用化学, 2012, 29(6): 647) [12] Wang W H, Wang C Y, Shen K L. Progresses of electrochemical corrosion research using SKP and LEIS technology. Mater Prot, 2016, 49(12): 64 (王文和, 王昌酉, 沈溃领. SKP 和 LEIS 技术在电化学腐蚀 研究中的应用进展. 材料保护, 2016, 49(12): 64) [13] Li Q D, Ni R, Fan H. Research progress of electrochemical techniques for measurement of properties of organic coatings. Ma鄄 ter Prot, 2013, 46(7): 53 (李全德, 倪荣, 范华. 有机涂层性能电化学测试技术的应 用进展. 材料保护, 2013, 46(7): 53) [14] Jin T Y, Cheng Y F. In situ characterization by localized electro鄄 chemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel. Corros Sci, 2011, 53 (2): 850 [15] Long X H, Chen J H, Chen Y. Adsorption of ethyl xanthate on ZnS(110 ) surface in the presence of water molecules: a DFT study. Appl Surf Sci, 2016, 370: 11 [16] Long X H, Chen Y, Chen J H, et al. The effect of water mole鄄 cules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: a DFT study. Appl Surf Sci, 2016, 389: 103 [17] Cao F, Sun C Y, Wang H J, et al. Density functional study on the relationship between the electronic structure and flotation per鄄 formance of xanthate formates. Chin J Eng, 2015, 37(7): 851 (曹飞, 孙传尧, 王化军, 等. 黄原酸甲酸酯的电子结构与浮 选性能关系的密度泛函研究. 工程科学学报, 2015, 37(7): 851) [18] Wang J Y, Liu Q X, Zeng H B. Understanding copper activation and xanthate adsorption on sphalerite by time鄄of鄄flight secondary ion mass spectrometry, X鄄ray photoelectron spectroscopy, and in situ scanning electrochemical microscopy. J Phys Chem C, 2013, 117(39): 20089 [19] Fukui K, Yonezawa T, Nagata C, et al. Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules. J Chem Phys, 1954, 22(8): 1433 ·547·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有