正在加载图片...
·1490· 工程科学学报,第37卷,第11期 0.6 7]Mishra S K,Srivastava A K.Kumar D,et al.Microstructural and electrochemical impedance characterization of bio-functionalized ultrafine ZnS nanocrystals-reduced graphene oxide hybrid for im- 0.4 munosensor applications.Nanoscale,2013,5(21):10494 [8]Tian Y,Huang G F.Tang L J,et al.Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. .2 -I mmol .L,5 d Mater Lett,2012,83:104 ◆1mmol-L-.20d -2 mmol.L,5 d Zhao Q R.Xie Y,Zhang Z C,et al.Sizeselective synthesis of -2 mmol.L.20 d zinc sulfide hierarchical structures and their photocatalytic activi- 0 10 20 30 ty.Cryst Grouth Des,2007,7(1)153 时间min [10]Liu Y,Hu J C,Zhou T F,et al.Self-assembly of lavered wurtz- 图6不同实验条件制备疏化锌光催化降解率曲线对比图 ite ZnS nanorods/nanowires as highly efficient photocatalysts.J Fig.6 Degradation rates of methyl orange at different intervals with a Mater Chem,2011,21(41):16621 series of ZnS catalysts [11]Xiong S L,Xi BJ,Wang C M,et al.Tunable synthesis of vari- ous wurtzite ZnS architectural structures and their photocatalytic PET衬底柔韧性良好,能裁减成任意的形状,可以随意 properties.Ado Funct Mater,2007,17(15):2728 折叠弯曲,这些优势使硫化锌能适用于微纳或复杂的 012]Hu J S,Ren LL,Guo Y G,et al.Mass production and high 应用环境.而且组装在衬底上的硫化锌作为催化剂使 photocatalytic activity of ZnS nanoporous nanoparticles.Ange 用,可以避免对待处理体系产生污染,也使得催化剂的 Chem,2005,44(8):1269 [13]Chen Y,Yin R H,Wu Q S.Solvothermal synthesis of well-dis- 回收利用简化,大大降低了光催化降解有机物的成本 perse ZnS nanorods with efficient photocatalytic properties.J 3结论 Nanomater,2012,2012(1):560310 [14]Yu S H,Yoshimura M.Shape and phase control of ZnS nano- 在自组装分子层作用下,纤锌矿硫化锌纳米晶膜 crystals:template fabrication of wurtzite ZnS single-crystal 通过油一水液一液界面反应实现了室温条件下在柔性 nanosheets and ZnO flake-ike dendrites from a lamellar molecu- lar precursor ZnS.(NH2 CH2CH2 NH2)os.Ade Mater,2002, 聚合物衬底上的组装.硫化锌纳米晶膜的组装是油一 14(4):296 水液一液界面与自组装硅烷分子层协同作用的结果. [15]Qadri S B,Skelton E F,Hsu D,et al.Size-induced transition- 该纳米品膜能在紫外光辅助下,作为光催化剂达到对 temperature reduction in nanoparticles of ZnS.Phys Rev B, 有机质分子的降解作用,降解率主要与硫化锌纳米晶 1999,60(13):9191 膜的表面积相关.该方法是一种简便、绿色的一步反 [16]Wang Z W,Daemen LL,Zhao Y S,et al.Morphology-tuned 应法,且实现了无添加剂条件下,高温稳定相纤锌矿在 wurtzite-type ZnS nanobelts.Nat Mater,2005,4(12):922 [17]Jiang L F,Yang M,Zhu S Y,et al.Phase evolution and mor- 聚合物衬底上的室温制备,它为在温和液相条件下合 phology control of ZnS in a solvothermal system with a single pre- 成纳米结构的半导体功能膜提供了一条新的便捷的 cursor.J Phys Chem C,2008,112(39):15281 途径. h8] Biswas S,Kar S.Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures:a simple solvother- 参考文献 mal approach.Nanotechnology,2008,19(4):045710 [Fang X S,Bando Y,Liao M Y,et al.An efficient way to assem- [19]Zhao Y W,Zhang Y,Zhu H,et al.Low-temperature synthesis ble ZnS nanobelts as ultraviolet-ight sensors with enhanced photo- of hexagonal (wurtzite)ZnS nanocrystals.J Am Chem Soc, current and stability.Ade Funct Mater,2010,20(3):500 2004,126(22):6874 2]Chen Z G,Cheng L N,Xu H Y,et al.ZnS branched architec- [20]Dawood F,Schaak R.ZnO-emplated synthesis of wurtzite-ype tures as optoelectronic devices and field emitters.Adr Mater, ZnS and ZnSe nanoparticles.J Am Chem Soc,2009,131:424 2010,22(21):2376 221]Banerjee I A,Yu L,Matsui H.Room-temperature wurtzite ZnS B]Samant K M,Suroshe JS,Garje SS.One-pot solvothermal coating of nanocrystal growth on Zn finger-ike peptide nanotubes by con- carbon spheres with ZnS nanocrystallites and their use in the photo- trolling their unfolding peptide structures.Am Chem Soc, degradation of dyes.Eur J Inorg Chem,2014,2014(3):499 2005,127(46):16002 4]Zhou W,Schwartz DT,Baneyx F.Single-pot biofabrication of 2]Pokroy B,Fitch A N,Zolotoyabko E.Structure of biogenic arag- zinc sulfide immuno-quantum dots.J Am Chem Soc,2010,132 onite (CaCO3).Cryst Grouth Des,2007,7(9):1580 (13):4731 D3]Qiao L,Feng Q L,Lu S S.In vitro growth of nacre-ike tablet [5]Fang X,Wu L.Hu L.ZnS nanostructure arrays:a developing forming:from amorphous calcium carbonate,nanostacks to hexa- material star.Ade Mater,2011,23 (5):585 gonal tablets.Cryst Grouth Des,2008,8 (5):1509 6]Shi L,Xu Y M,Li Q.Shape-selective synthesis and optical prop- 24]Xiang J H,Zhu P X,Masuda Y,et al.Fabrication of self-as- erties of highly ordered one-dimensional zns nanostructures.Cryst sembled monolayers (SAMs)and inorganic micropattern on fexi- Growth Des,2009,9(5):2214 ble polymer substrate.Langmuir,2004,20 (8):3278工程科学学报,第 37 卷,第 11 期 图 6 不同实验条件制备硫化锌光催化降解率曲线对比图 Fig. 6 Degradation rates of methyl orange at different intervals with a series of ZnS catalysts PET 衬底柔韧性良好,能裁减成任意的形状,可以随意 折叠弯曲,这些优势使硫化锌能适用于微纳或复杂的 应用环境. 而且组装在衬底上的硫化锌作为催化剂使 用,可以避免对待处理体系产生污染,也使得催化剂的 回收利用简化,大大降低了光催化降解有机物的成本. 3 结论 在自组装分子层作用下,纤锌矿硫化锌纳米晶膜 通过油--水液--液界面反应实现了室温条件下在柔性 聚合物衬底上的组装. 硫化锌纳米晶膜的组装是油-- 水液--液界面与自组装硅烷分子层协同作用的结果. 该纳米晶膜能在紫外光辅助下,作为光催化剂达到对 有机质分子的降解作用,降解率主要与硫化锌纳米晶 膜的表面积相关. 该方法是一种简便、绿色的一步反 应法,且实现了无添加剂条件下,高温稳定相纤锌矿在 聚合物衬底上的室温制备,它为在温和液相条件下合 成纳米结构的半导体功能膜提供了一条新的便捷的 途径. 参 考 文 献 [1] Fang X S,Bando Y,Liao M Y,et al. An efficient way to assem￾ble ZnS nanobelts as ultraviolet-light sensors with enhanced photo￾current and stability. Adv Funct Mater,2010,20( 3) : 500 [2] Chen Z G,Cheng L N,Xu H Y,et al. ZnS branched architec￾tures as optoelectronic devices and field emitters. Adv Mater, 2010,22( 21) : 2376 [3] Samant K M,Suroshe J S,Garje S S. One-pot solvothermal coating of carbon spheres with ZnS nanocrystallites and their use in the photo￾degradation of dyes. Eur J Inorg Chem,2014,2014( 3) : 499 [4] Zhou W,Schwartz D T,Baneyx F. Single-pot biofabrication of zinc sulfide immuno-quantum dots. J Am Chem Soc,2010,132 ( 13) : 4731 [5] Fang X,Wu L,Hu L. ZnS nanostructure arrays: a developing material star. Adv Mater,2011,23 ( 5) : 585 [6] Shi L,Xu Y M,Li Q. Shape-selective synthesis and optical prop￾erties of highly ordered one-dimensional zns nanostructures. Cryst Growth Des,2009,9( 5) : 2214 [7] Mishra S K,Srivastava A K,Kumar D,et al. Microstructural and electrochemical impedance characterization of bio-functionalized ultrafine ZnS nanocrystals-reduced graphene oxide hybrid for im￾munosensor applications. Nanoscale,2013,5( 21) : 10494 [8] Tian Y,Huang G F,Tang L J,et al. Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Mater Lett,2012,83: 104 [9] Zhao Q R,Xie Y,Zhang Z G,et al. Size-selective synthesis of zinc sulfide hierarchical structures and their photocatalytic activi￾ty. Cryst Growth Des,2007,7( 1) : 153 [10] Liu Y,Hu J C,Zhou T F,et al. Self-assembly of layered wurtz￾ite ZnS nanorods/ nanowires as highly efficient photocatalysts. J Mater Chem,2011,21( 41) : 16621 [11] Xiong S L,Xi B J,Wang C M,et al. Tunable synthesis of vari￾ous wurtzite ZnS architectural structures and their photocatalytic properties. Adv Funct Mater,2007,17( 15) : 2728 [12] Hu J S,Ren L L,Guo Y G,et al. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew Chem,2005,44( 8) : 1269 [13] Chen Y,Yin R H,Wu Q S. Solvothermal synthesis of well-dis￾perse ZnS nanorods with efficient photocatalytic properties. J Nanomater,2012,2012( 1) : 560310 [14] Yu S H,Yoshimura M. Shape and phase control of ZnS nano￾crystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecu￾lar precursor ZnS·( NH2 CH2 CH2 NH2 ) 0. 5 . Adv Mater,2002, 14( 4) : 296 [15] Qadri S B,Skelton E F,Hsu D,et al. Size-induced transition￾temperature reduction in nanoparticles of ZnS. Phys Rev B, 1999,60 ( 13) : 9191 [16] Wang Z W,Daemen L L,Zhao Y S,et al. Morphology-tuned wurtzite-type ZnS nanobelts. Nat Mater,2005,4( 12) : 922 [17] Jiang L F,Yang M,Zhu S Y,et al. Phase evolution and mor￾phology control of ZnS in a solvothermal system with a single pre￾cursor. J Phys Chem C,2008,112( 39) : 15281 [18] Biswas S,Kar S. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvother￾mal approach. Nanotechnology,2008,19( 4) : 045710 [19] Zhao Y W,Zhang Y,Zhu H,et al. Low-temperature synthesis of hexagonal ( wurtzite ) ZnS nanocrystals. J Am Chem Soc, 2004,126( 22) : 6874 [20] Dawood F,Schaak R. ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles. J Am Chem Soc,2009,131: 424 [21] Banerjee I A,Yu L,Matsui H. Room-temperature wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by con￾trolling their unfolding peptide structures. J Am Chem Soc, 2005,127( 46) : 16002 [22] Pokroy B,Fitch A N,Zolotoyabko E. Structure of biogenic arag￾onite ( CaCO3 ) . Cryst Growth Des,2007,7( 9) : 1580 [23] Qiao L,Feng Q L,Lu S S. In vitro growth of nacre-like tablet forming: from amorphous calcium carbonate,nanostacks to hexa￾gonal tablets. Cryst Growth Des,2008,8 ( 5) : 1509 [24] Xiang J H,Zhu P X,Masuda Y,et al. Fabrication of self-as￾sembled monolayers ( SAMs) and inorganic micropattern on flexi￾ble polymer substrate. Langmuir,2004,20 ( 8) : 3278 · 0941 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有