正在加载图片...
第12期 李龙飞等:低碳含铌钢粗晶奥氏体再结晶的数值模拟 .1541. chanical control process)工艺中的奥氏体未再结晶区 Mater,1991,39:529 轧制即在此温度范围内进行.在T~T的温度范 [5]Dutta B.Palmiere E J,Sellars C M.Modelling the kinetics of strain induced precipitation in Nb microalloyed steels.Acta 围内,虽然再结晶比析出早,但由于析出的强烈阻碍 Mater,2001,49:785 作用,再结晶不能充分进行,即此温度范围内为部分 [6]Zurob HS.Hutchinson C R,Brechet Y,et al.Rationalization of 再结晶区,变形组织容易出现混晶,在制定热连轧工 the softening and recrystallization behaviour of microalloyed 艺时应避免在TR~T的温度区间内进行变形 austenite using mechanism maps.Mater Sci Eng A.2004.38; 由于涉及的温度范围较宽,对于某一特定钢种, 64 [7]Zurob HS,Hutchinson C R.Brechet Y,et al.Modeling recrys 需要进行大量的变形实验才能绘制比较准确的 tallization of microalloyed austenite:effect of coupling recovery. PTT图,而一旦合金成分改变时则需要进行重复 precipitation and reerystallization.Acta Mater,2002.50:3075 实验,从图3的结果可以看出,利用基于位错一析 [8]Wang X T.SiweckiT.Engberg G A.Physical model for predic- 出一再结晶之间交互作用模型的数值模型来绘制 tion of microst ructure evolution during thermo mechanical process- RPTT图可以显著减少实验工作量,而且适应性强, ing.Mater Sci Forum,2003,426-432:3801 仅需少量调整就可以绘制不同钢种的RPTT图. [9]Zhang L.Microstructure Control and Process Optimization of Thin Slab Direct Rolling [Dissertation].Beijing:University of 3结论 Science and Technology Beijing.2007 (张玲.TSDR工艺热加工过程的组织演变与控制[学位论 以物理治金原理为基础建立了低碳含铌钢热变 文]北京:北京科技大学,2007) 形道次间隔期间内的组织预测模型,模型以位错密 [10]Xue C X.Zhang L.Yang W Y,et al.Static reerystallization in 度作为联系析出、回复与再结晶行为之间的桥梁,综 low-carbon niobium microalloyed steels with coarse austenite. Uni Sci Technol Beijing.2008.30(4):374 合考虑析出回复一再结晶之间的交互作用.利用该 (薛春霞,张玲,杨王玥,等,低碳含铌钢粗大奥氏体的静态 模型对低碳含铌钢道次间隔期间内粗晶奥氏体的组 再结晶.北京科技大学学报,2008,30(4):374) 织演变进行了数值模拟,结果与实验数据符合得较 [11]Deschamps A.Brechet Y.Influence of predeformation and age- 好.所得低碳含铌钢的再结晶、析出过程的再结晶 ing of an AlZn-Mg Alloy-lI Modeling of precipitation kinetics 析出一温度时间(RPTT)图对制定含铌微合金钢薄 and yield stress.Acta Mater,1998.47:293 板坯连铸连轧工艺具有很好的指导意义, [12]Liu W J.A new theory and kinetic modeling of strain induced precipitation of Nb(CN)in microalloyed austenite.Metall 参考文献 Mater Trans A.1995,26,1641 [13]DeArdo A J.Thermomechanical processing of microalloyed [1]Sellars C M.Whiteman JA.Recrystallization and grain growth in steels:grain refinement revisited//Palmiere E J.Mahfouf M, hot rolling.Met Sci.1978.13:187 Pinna C.International Conference on Thermomechanical Pro [2]Mecking H.Kocks U F.Kinetics of flow and strain-hardening. cessing:Mechanics,Microstructure.Control.Sheffield: Acta Metall,1981.29:1865 University of Sheffield.20029 [3]Yoshie A,Fujita T.Fujioka M,et al.Formulation of flow stress [14]Cahn J W.The impurity-drag effect in grain boundary motion. of Nb added steels by considering work-hardening and dynamic re- Acta Mater,1962.10:789 covery.ISIJ Int,1996,36.467 [15]Li G.Maccagno T M.Bai D Q.Effect of initial grain size on [4]Kwon 0,Deardo A J.Interactions between recrystallization and the static recrystallization kinetics of Nb microalloyed steels. precipitation in hot-deformed microalloyed steels.Acta Metall IS1J1nt,1996,36:1479chanical control process)工艺中的奥氏体未再结晶区 轧制即在此温度范围内进行.在 T R~ T′的温度范 围内‚虽然再结晶比析出早‚但由于析出的强烈阻碍 作用‚再结晶不能充分进行‚即此温度范围内为部分 再结晶区‚变形组织容易出现混晶‚在制定热连轧工 艺时应避免在 T R~ T′的温度区间内进行变形. 由于涉及的温度范围较宽‚对于某一特定钢种‚ 需要进行大量的变形实验才能绘制比较准确的 RPTT 图‚而一旦合金成分改变时则需要进行重复 实验.从图3的结果可以看出‚利用基于位错-析 出-再结晶之间交互作用模型的数值模型来绘制 RPTT 图可以显著减少实验工作量‚而且适应性强‚ 仅需少量调整就可以绘制不同钢种的 RPTT 图. 3 结论 以物理冶金原理为基础建立了低碳含铌钢热变 形道次间隔期间内的组织预测模型.模型以位错密 度作为联系析出、回复与再结晶行为之间的桥梁‚综 合考虑析出-回复-再结晶之间的交互作用.利用该 模型对低碳含铌钢道次间隔期间内粗晶奥氏体的组 织演变进行了数值模拟‚结果与实验数据符合得较 好.所得低碳含铌钢的再结晶、析出过程的再结晶- 析出-温度-时间(RPTT)图对制定含铌微合金钢薄 板坯连铸连轧工艺具有很好的指导意义. 参 考 文 献 [1] Sellars C M‚Whiteman J A.Recrystallization and grain growth in hot rolling.Met Sci‚1978‚13:187 [2] Mecking H‚Kocks U F.Kinetics of flow and strain-hardening. Acta Metall‚1981‚29:1865 [3] Yoshie A‚Fujita T‚Fujioka M‚et al.Formulation of flow stress of Nb added steels by considering work-hardening and dynamic re￾covery.ISIJ Int‚1996‚36:467 [4] Kwon O‚Deardo A J.Interactions between recrystallization and precipitation in hot-deformed microalloyed steels. Acta Metall Mater‚1991‚39:529 [5] Dutta B‚Palmiere E J‚Sellars C M.Modelling the kinetics of strain induced precipitation in Nb microalloyed steels. Acta Mater‚2001‚49:785 [6] Zurob H S‚Hutchinson C R‚Brechet Y‚et al.Rationalization of the softening and recrystallization behaviour of microalloyed austenite using mechanism maps.Mater Sci Eng A‚2004‚38: 64 [7] Zurob H S‚Hutchinson C R‚Brechet Y‚et al.Modeling recrys￾tallization of microalloyed austenite:effect of coupling recovery‚ precipitation and recrystallization.Acta Mater‚2002‚50:3075 [8] Wang X T‚Siwecki T‚Engberg G A.Physical model for predic￾tion of microstructure evolution during thermo mechanical process￾ing.Mater Sci Forum‚2003‚426-432:3801 [9] Zhang L. Microstructure Control and Process Optimiz ation of Thin Slab Direct Rolling [Dissertation ].Beijing:University of Science and Technology Beijing‚2007 (张玲.TSDR 工艺热加工过程的组织演变与控制 [ 学位论 文].北京:北京科技大学‚2007) [10] Xue C X‚Zhang L‚Yang W Y‚et al.Static recrystallization in low-carbon niobium-microalloyed steels with coarse austenite.J Uni Sci Technol Beijing‚2008‚30(4):374 (薛春霞‚张玲‚杨王 ‚等.低碳含铌钢粗大奥氏体的静态 再结晶.北京科技大学学报‚2008‚30(4):374) [11] Deschamps A‚Brechet Y.Influence of predeformation and age￾ing of an A-l Zn-Mg Alloy-Ⅱ Modeling of precipitation kinetics and yield stress.Acta Mater‚1998‚47:293 [12] Liu W J.A new theory and kinetic modeling of strain-induced precipitation of Nb (CN ) in microalloyed austenite. Metall Mater T rans A‚1995‚26:1641 [13] DeArdo A J. Thermomechanical processing of microalloyed steels:grain refinement revisited∥Palmiere E J‚Mahfouf M‚ Pinna C.International Conference on Thermomechanical Pro￾cessing: Mechanics‚ Microstructure & Control.Sheffield: University of Sheffield‚2002:9 [14] Cahn J W.The impurity-drag effect in grain boundary motion. Acta Mater‚1962‚10:789 [15] Li G‚Maccagno T M‚Bai D Q.Effect of initial grain size on the static recrystallization kinetics of Nb microalloyed steels. ISIJ Int‚1996‚36:1479 第12期 李龙飞等: 低碳含铌钢粗晶奥氏体再结晶的数值模拟 ·1541·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有