正在加载图片...
第12章正交编码与伪随机序列 自相关系数: 类似上述互相关系数的定义,可以对于一个长为的码组x 定义其自相关系数为 j=0,1,.,(n-1) ni= 式中,x的下标按模n运算,即有xn+k三xk。例如,设 x=(x1,x2,x3,x4)=(+1,-1,-1,+1) 如索二2 P0)= x2=1 xX=x4,+33 1 P(0= 6+xx+x)=4-1+1-1+1=0 P(2)= X,X+2=(xX3+x2x4+X31+x4x2)=-1 4 p(3) XX+3=4x++2+x)=0 66 第12章 正交编码与伪随机序列 ◆ 自相关系数: 类似上述互相关系数的定义,可以对于一个长为n的码组x 定义其自相关系数为 式中,x的下标按模n运算,即有xn+k  xk 。例如,设 则有 = = + = − n i x xi xi j j n n j 1 , 0,1, ,( 1) 1  ( )  ( , , , ) ( 1, 1, 1, 1) x = x1 x2 x3 x4 = + − − + ( ) 0 4 1 4 1 (3) ( ) 1 4 1 4 1 (2) ( 1 1 1 1) 0 4 1 ( ) 4 1 4 1 (1) 1 4 1 (0) 1 4 2 1 3 2 4 3 4 1 3 1 3 2 4 3 1 4 2 4 1 2 1 2 2 3 3 4 4 1 4 1 1 4 1 2 = = + + + = = = + + + = − = = + + + = − + − + = = =     = + = + = + = x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x i x i i i x i i i x i i i x i    
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有