正在加载图片...
·976* 工程科学学报,第39卷,第7期 a (b)I (c) 六角对称 干涉区域 光刻胶 M4 2cm P-1.5 sind d 2um 2μm 2 um ● 图3三光束激光干涉.(a)三光束激光干涉曝光台:(b)三光束激光干涉区域的能量分布模拟图:(©)六角排列的孔状模板示意图:() 三光束激光干涉法制备的六角排列圆形孔洞模板扫描电镜图:(c)周期为707m的图案化Zm0纳米棒阵列:()周期为353nm的图案化 Zn0纳米棒阵列 Fig.3 Three-eam laser interference:(a)optical image of three-beam Lloyd's mirror interferometer:(b)simulated intensity distribution of hexagon- al interference pattern in interference area:(c)schematie of corresponding hexagonal photoresist hole template:(d)top view SEM image of photore- sist hole template at a period of 707nm:(e)SEM image of ZnO nanorod arrays at a period of 707nm:(f)top view SEM image of ZnO nanorod arrays at a smaller period of 353 nm 0°+30 0P460 0°+90 2 um 9 d 9 -0° (e) -0(AD =2.09% 17.4% --0°+60° 1-2.09% -0°+30°(A 7 =1.78% -0°(A) 7 =1.68% -0°+60°(AD 6 -0°+60(AD 6 -0°+90°(AD =1.11% 7=1.34% 5 27.6% 4 7-1.11% 力=0.87% 2 0.1 0.2 0.30.4 0.5 0.6 0.10.2 0.3040.5 0.6 电压/W 电压N 图4阵列形貌及器件性能图.(a)基于0°+30°曝光模式得到的图案化Z0-ZS核壳纳米阵列:(b)基于0°+60°曝光模式得到的图案化 ZnO-ZnS核壳纳米阵列:(c)基于0°+90°曝光模式得到的图案化Za0-ZnS核壳纳米阵列:(d)对电极带Al反射层前后的效率变化:(c)四 种不同排列方式ZO-ZS核壳纳米棒阵列光阳极对应的染料敏化太阳能电池电流-电压曲线 Fig.4 Morphology and device performance:(a)SEM images of pattered ZnO-ZnS core-shell nanorod arrays with long hexagonal symmetry by 0+ 30 exposure:(b)SEM images of patterned ZnO-ZnS core-shell nanorod arrays with hexagonal symmetry by6 exposure:(c)SEM images of patterned ZnO-Zns coreshell nanorod arrays with square symmetry by+9 exposure:(d)J-V curves of DSSCs based on patterned ZnO-Zns coreshell nanorod arrays photoanodes with line and hexagonal symmetries with and without an Al reflecting layer:(e)curves of DSSCs based on nano- rod arrays photoanodes with four different symmetries with Al reflecting layer工程科学学报,第 39 卷,第 7 期 图 3 三光束激光干涉. ( a) 三光束激光干涉曝光台; ( b) 三光束激光干涉区域的能量分布模拟图; ( c) 六角排列的孔状模板示意图; ( d) 三光束激光干涉法制备的六角排列圆形孔洞模板扫描电镜图; ( e) 周期为 707 nm 的图案化 ZnO 纳米棒阵列; ( f) 周期为 353 nm 的图案化 ZnO 纳米棒阵列 Fig. 3 Three-beam laser interference: ( a) optical image of three-beam Lloyd's mirror interferometer; ( b) simulated intensity distribution of hexagon￾al interference pattern in interference area; ( c) schematic of corresponding hexagonal photoresist hole template; ( d) top view SEM image of photore￾sist hole template at a period of 707 nm; ( e) SEM image of ZnO nanorod arrays at a period of 707 nm; ( f) top view SEM image of ZnO nanorod arrays at a smaller period of 353 nm 图 4 阵列形貌及器件性能图. ( a) 基于 0° + 30°曝光模式得到的图案化 ZnO--ZnS 核壳纳米阵列; ( b) 基于 0° + 60°曝光模式得到的图案化 ZnO--ZnS 核壳纳米阵列; ( c) 基于0° + 90°曝光模式得到的图案化 ZnO--ZnS 核壳纳米阵列; ( d) 对电极带 Al 反射层前后的效率变化; ( e) 四 种不同排列方式 ZnO--ZnS 核壳纳米棒阵列光阳极对应的染料敏化太阳能电池电流--电压曲线 Fig. 4 Morphology and device performance: ( a) SEM images of patterned ZnO--ZnS core-shell nanorod arrays with long hexagonal symmetry by 0° + 30° exposure; ( b) SEM images of patterned ZnO--ZnS core-shell nanorod arrays with hexagonal symmetry by 0° + 60° exposure; ( c) SEM images of patterned ZnO--ZnS core-shell nanorod arrays with square symmetry by 0° + 90° exposure; ( d) J--V curves of DSSCs based on patterned ZnO--ZnS core-shell nanorod arrays photoanodes with line and hexagonal symmetries with and without an Al reflecting layer; ( e) curves of DSSCs based on nano￾rod arrays photoanodes with four different symmetries with Al reflecting layer · 679 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有