正在加载图片...
§32随机变量的方差和矩 方差 定义3.3:X的方差定义为: D(X)=ELX-E(XI 称√D(X为X的标准差(均方差) 计算公式:D(X)=E(X2)-[E(X)2 EX=DX +(Ex)2 证明 D(X)=ELX-E()]=ELX2-2YE(X)+(E(X)2I =E(X2)-2E(X)E(X)+[E(X E(x2)-[E(X) 例312:设X~B(n,p),D(X)=np(1-p) 例3.13:设X~P(4),D(X)= 解:E(X)=∑k E(X2)=∑k2 (k-1) 2+>-he-d=2+2 D(X)=E(X2)-[E(X)2=2+-2=2 例314:设XPx=k}=qp,k=12…D(x)= 例3.15:设X~N(u,a2)§3.2 随机变量的方差和矩 一. 方差 定义 3.3:X 的方差定义为: 2 D(X ) = E[X − E(X )] 且称 D(X ) 为 X 的标准差(均方差) 计算公式: 2 2 D(X ) = E(X ) −[E(X )] 2 ( )2 EX = DX + EX 证明: 2 D(X ) = E[X − E(X )] = [ 2 ( ) ( ) ] 2 ( )2 E X − XE X + E X = 2 2 E(X ) − 2E(X )E(X ) + [E(X )] = 2 2 E(X ) −[E(X )] 例 3.12: 设 X~B(n, p) , D(X ) = np(1− p) 例 3.13: 设 X~P(λ) , D(X ) = λ 解: λ λ λ = ⋅ = − ∞ = ∑ e k E X k k k 0 ! ( ) λ λ λ λ λ − ∞ = − − ∞ = ⋅ − = ∑ ⋅ = ∑ ⋅ e k e k k E X k k k k k 1 1 0 2 2 ! ( 1)! ( ) λ λ λ − ∞ = = = − ∑ + e i i i i i k 0 1 ! ( 1) = λ λ λ λ λ λ − ∞ = − ∞ = ∑ ⋅ +∑ ⋅ e i e i i i i i i 0 0 ! ! = λ + λ 2 = − = λ + λ − λ = λ 2 2 2 2 D(X ) E(X ) [E(X )] 例 3.14:设 2 1 { } , 1,2, ( ) p q X P X k q p k D X k = = = = ~ − " 例 3.15:设 2 2 X~N(µ,σ ) , D(X ) = σ 解: E(X ) = µ
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有