正在加载图片...
汪家梅等:压水堆一回路主管道316L不锈钢的电化学腐蚀行为 ·1363· 3结论 analysis of vent pipe PWSCC (primary water stress corrosion cracking)in PWR vessel head penetration.Nucl Eng Des, 2014,269:291 (1)温度是影响316L不锈钢电化学腐蚀性能最 [13]Duan Z G,Arjmand F,Zhang L F,et al.Investigation of the 显著的因素,温度越高,腐蚀电流密度越大,点蚀电位 corrosion behavior of 304L and 316L stainless steels at high-tem- 越低,表面氧化膜阻抗越低 perature borated and lithiated water.Nucl Sci Technol,2016 (2)C1ˉ浓度和溶解氧浓度对316L不锈钢电化学 53(9):1435 腐蚀性能的影响与温度密切相关,温度较低时(T< [14]Bahram M,Khezri S,Esmhosseini M.Experimental design for 150℃),C1~浓度和溶解氧浓度均对316L腐蚀电流密 the optimization of micelle mediated extraction of malachite green using anionic surfactant,sodium dodecyl sulfate.Anal Methods, 度几乎无影响:温度较高时,分别为T>130℃和T> 2011,3:1096 150℃,C1~和溶解氧浓度均对点蚀电位几乎无影响, [15]Bahram M,Jahangiri S,Farhadi K,et al.Central composite de- 但腐蚀电流密度却由于闭塞效应的产生而随C1ˉ和溶 sign for the optimization of hydrogel based pH-dependent extrac- 解氧浓度的增加而显著增加,腐蚀加剧. tion and spectrophotometric determination of mercury.Anal Bio- (3)电化学阻抗谱和表面氧化膜形貌分析同样表 anal Chem Res,2014,1(1):29 [16]Farzin A,Jiamei W,Lefu Z,Investigation of the Corrosion Inhi- 明温度越高,阻抗越低,腐蚀越剧烈:温度高于一定值 bition of CTAB and SDS on Carbon Steel Using an Experimental 后,C1ˉ和溶解氧浓度越高,表面氧化膜颗粒越致密均 Design Strategy.J Mater Eng Perform,2016,25(3):809 匀,越容易形成狭长闭塞区,腐蚀速率越快 [17]Arjmand F,Adriaens A.Electrochemical quantification of cop- per-based alloys using voltammetry of microparticles:optimization 参考文献 of the experimental conditions.J Solid State Electrochem,2012, [1]da Cunha Belo M.Walls M,Hakiki N E,et al.Composition, 16(2):535 structure and properties of the oxide films formed on the stainless [18]Niedrach L W.Use of a high temperature pH sensor as a "Pseu- steel 316L in a primary type PWR environment.Corros Sci,1998, do-Reference Electrode"in the monitoring of corrosion and redox 40(2-3):447 potentials at 285 C.J Electrochem Soc,1982,129(7):1445 [2] Anoop M B.Rao K B.Lakshmanan N.Safety assessment of aus- [19]Lin CC,Smith F R,Ichikawa N,et al.Electrochemical poten tenitic steel nuclear power plant pipelines against stress corrosion tial measurements under simulated BWR water chemistry condi- cracking in the presence of hybrid uncertainties.Int Pres Ves tions.Corrosion,1992,48(1):16 Pip,2008,85(4):238 [20]Kim Y J.Analysis of oxide film formed on type 304 stainless [3]Li Y K,Lu S P,Li D Z,et al.Remaining life prediction of the steel in 288 C water containing oxygen,hydrogen,and hydrogen core shroud due to stress corrosion cracking failure in BWRs using peroxide.Corrosion,1999,55(1):81 numerical simulations.J Nucl Sci Technol,2015,52(1):96 [21] Tachibana M,Ishida K,Wada Y,et al.Determining factors for [4] Homonnay Z,Kuzmann E,Varga K,et al.Comprehensive inves- anodic polarization curves of typical structural materials of boiling tigation of the corrosion state of the heat exchanger tubes of steam water reactors in high temperature-high purity water.Nucl Sci generators.Part Il.Chemical composition and structure of tube Technol.2012,49(2):253 surfaces.J Nucl Mater,2006,348(1-2):191 [22]Li X H,Wang JQ,Han E H,et al.Corrosion behavior for Alloy [5]Bosch R W,Feron D.Celis J P.Electrochemistry in Light Water 690 and Alloy 800 tubes in simulated primary water.Corros Sci, Reactors:Reference Electrodes.Measurement,Corrosion and Tribo- 2013,67:169 corrosion Issues.Washington:CRC Press,2007 [23]Stellwag B.The mechanism of oxide film formation on austenitic [6]Sun H,Wu X Q,Han E H.Effects of temperature on the oxide stainless steels in high temperature water.Corros Sci,1998,40 film properties of 304 stainless steel in high-temperature lithium (2-3):337 borate buffer solution.Corros Sci,2009.51(12):2840 [24]Ziemniak S E,Hanson M,Sander P C.Electropolishing effects [Sun H,Wu XQ Han E H.et al.Effects of pH and dissolved oxygen on corrosion behavior of 304 stainless steel in high temperature, on electrochemical behavior and oxide films of 304SS in borated and hydrogenated water.Corros Sci,2008,50(9):2465 lithiated high-temperature water.Corros Sci,2012.59:334 [25]De Cristofaro N,Piantini M,Zacchetti N.The influence of tem- [8]Liu X H,Wu X Q,Han E H.Effect of Zn injection on estab- perature on the passivation behaviour of a super duplex stainless lished surface oxide films on 316L stainless steel in borated and li- steel in a boric-borate buffer solution.Corros Sci,1997,39 thiated high-temperature water.Corros Sci,2012,65:136 (12):2181 [9]Berg H P.Corrosion mechanisms and their consequences for nuclear [26]de Araujo Figueiredo C.Bosch R W.Vankeerberghen M.Elec- power plants with light water reactors.R&RATA,2009,2(4):57 trochemical investigation of oxide films formed on nickel alloys [10] Andresen PL.Emerging issues and fundamental processes in en- 182.600 and 52 in high temperature water.Electrochim Acta, vironmental cracking in hot water.Corrosion,2008,64(5):439 2011,56(23):7871 [11]Xu H Q,Mahmoud S,Nana A,et al.A new modeling method [27] Bosch R W,Vankeerberghen M.In-pile electrochemical tests of for natural PWSCC cracking simulation in a dissimilar metal stainless steel under PWR conditions:interpretation of electro- weld.Int J Pres Ves Pip,2014,116:20 chemical impedance spectroscopy data.Electrochim Acta,2007, [12] Kang S S,Hwang S S,Kim H P,et al.The experience and 52(27):7538汪家梅等: 压水堆一回路主管道 316L 不锈钢的电化学腐蚀行为 3 结论 (1) 温度是影响 316L 不锈钢电化学腐蚀性能最 显著的因素,温度越高,腐蚀电流密度越大,点蚀电位 越低,表面氧化膜阻抗越低. (2) Cl - 浓度和溶解氧浓度对 316L 不锈钢电化学 腐蚀性能的影响与温度密切相关,温度较低时( T < 150 益 ),Cl - 浓度和溶解氧浓度均对 316L 腐蚀电流密 度几乎无影响;温度较高时,分别为 T > 130 益 和 T > 150 益 ,Cl - 和溶解氧浓度均对点蚀电位几乎无影响, 但腐蚀电流密度却由于闭塞效应的产生而随 Cl - 和溶 解氧浓度的增加而显著增加,腐蚀加剧. (3) 电化学阻抗谱和表面氧化膜形貌分析同样表 明温度越高,阻抗越低,腐蚀越剧烈;温度高于一定值 后,Cl - 和溶解氧浓度越高,表面氧化膜颗粒越致密均 匀,越容易形成狭长闭塞区,腐蚀速率越快. 参 考 文 献 [1] da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment. Corros Sci, 1998, 40(2鄄3): 447 [2] Anoop M B, Rao K B, Lakshmanan N. Safety assessment of aus鄄 tenitic steel nuclear power plant pipelines against stress corrosion cracking in the presence of hybrid uncertainties. Int J Pres Ves Pip, 2008, 85(4): 238 [3] Li Y K, Lu S P, Li D Z, et al. Remaining life prediction of the core shroud due to stress corrosion cracking failure in BWRs using numerical simulations. J Nucl Sci Technol, 2015, 52(1): 96 [4] Homonnay Z, Kuzmann E, Varga K, et al. Comprehensive inves鄄 tigation of the corrosion state of the heat exchanger tubes of steam generators. Part II. Chemical composition and structure of tube surfaces. J Nucl Mater, 2006, 348(1鄄2): 191 [5] Bosch R W, F佴ron D, Celis J P. Electrochemistry in Light Water Reactors: Reference Electrodes, Measurement, Corrosion and Tribo鄄 corrosion Issues. Washington: CRC Press, 2007 [6] Sun H, Wu X Q, Han E H. Effects of temperature on the oxide film properties of 304 stainless steel in high鄄temperature lithium borate buffer solution. Corros Sci, 2009, 51(12): 2840 [7] Sun H, Wu X Q, Han E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high鄄temperature water. Corros Sci, 2012, 59: 334 [8] Liu X H, Wu X Q, Han E H. Effect of Zn injection on estab鄄 lished surface oxide films on 316L stainless steel in borated and li鄄 thiated high鄄temperature water. Corros Sci, 2012, 65: 136 [9] Berg H P. Corrosion mechanisms and their consequences for nuclear power plants with light water reactors. R & RATA, 2009, 2(4): 57 [10] Andresen P L. Emerging issues and fundamental processes in en鄄 vironmental cracking in hot water. Corrosion, 2008, 64(5): 439 [11] Xu H Q, Mahmoud S, Nana A, et al. A new modeling method for natural PWSCC cracking simulation in a dissimilar metal weld. Int J Pres Ves Pip, 2014, 116: 20 [12] Kang S S, Hwang S S, Kim H P, et al. The experience and analysis of vent pipe PWSCC ( primary water stress corrosion cracking) in PWR vessel head penetration. Nucl Eng Des, 2014, 269: 291 [13] Duan Z G, Arjmand F, Zhang L F, et al. Investigation of the corrosion behavior of 304L and 316L stainless steels at high鄄tem鄄 perature borated and lithiated water. J Nucl Sci Technol, 2016, 53(9): 1435 [14] Bahram M, Khezri S, Esmhosseini M. Experimental design for the optimization of micelle mediated extraction of malachite green using anionic surfactant, sodium dodecyl sulfate. Anal Methods, 2011, 3: 1096 [15] Bahram M, Jahangiri S, Farhadi K, et al. Central composite de鄄 sign for the optimization of hydrogel based pH鄄dependent extrac鄄 tion and spectrophotometric determination of mercury. Anal Bio鄄 anal Chem Res, 2014, 1(1): 29 [16] Farzin A, Jiamei W, Lefu Z, Investigation of the Corrosion Inhi鄄 bition of CTAB and SDS on Carbon Steel Using an Experimental Design Strategy. J Mater Eng Perform, 2016, 25(3): 809 [17] Arjmand F, Adriaens A. Electrochemical quantification of cop鄄 per鄄based alloys using voltammetry of microparticles: optimization of the experimental conditions. J Solid State Electrochem, 2012, 16(2): 535 [18] Niedrach L W. Use of a high temperature pH sensor as a “Pseu鄄 do鄄Reference Electrode冶 in the monitoring of corrosion and redox potentials at 285 益 . J Electrochem Soc, 1982, 129(7): 1445 [19] Lin C C, Smith F R, Ichikawa N, et al. Electrochemical poten鄄 tial measurements under simulated BWR water chemistry condi鄄 tions. Corrosion, 1992, 48(1): 16 [20] Kim Y J. Analysis of oxide film formed on type 304 stainless steel in 288 益 water containing oxygen, hydrogen, and hydrogen peroxide. Corrosion, 1999, 55(1): 81 [21] Tachibana M, Ishida K, Wada Y, et al. Determining factors for anodic polarization curves of typical structural materials of boiling water reactors in high temperature鄄high purity water. J Nucl Sci Technol, 2012, 49(2): 253 [22] Li X H, Wang J Q, Han E H, et al. Corrosion behavior for Alloy 690 and Alloy 800 tubes in simulated primary water. Corros Sci, 2013, 67: 169 [23] Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water. Corros Sci, 1998, 40 (2鄄3): 337 [24] Ziemniak S E, Hanson M, Sander P C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water. Corros Sci, 2008, 50(9): 2465 [25] De Cristofaro N, Piantini M, Zacchetti N. The influence of tem鄄 perature on the passivation behaviour of a super duplex stainless steel in a boric鄄borate buffer solution. Corros Sci, 1997, 39 (12): 2181 [26] de Ara俨jo Figueiredo C, Bosch R W, Vankeerberghen M. Elec鄄 trochemical investigation of oxide films formed on nickel alloys 182, 600 and 52 in high temperature water. Electrochim Acta, 2011, 56(23): 7871 [27] Bosch R W, Vankeerberghen M. In鄄pile electrochemical tests of stainless steel under PWR conditions: interpretation of electro鄄 chemical impedance spectroscopy data. Electrochim Acta, 2007, 52(27): 7538 ·1363·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有