正在加载图片...
第36卷第5期 北京科技大学学报 Vol.36 No.5 2014年5月 Journal of University of Science and Technology Beijing May 2014 悬挂结构地震动力反应分析计算 高 林12四,李长洪”,葛楠,陈海彬2 1)北京科技大学土木与环境工程学院,北京1000832)河北联合大学地震工程研究中心,唐山063009 ☒通信作者,E-mail:gaolin_heut@126.com 摘要利用拉格朗日方程建立了核筒悬挂结构体系运动方程.考虑到大位移非线性的影响,采用Runge-Kutta方法求解体 系地震动力响应时程.计算结果表明悬挂体系能明显减小楼层层间位移、速度及加速度,减震效率接近90%。核筒截面抗弯 刚度对其截面内力与筒身水平位移影响最显著,截面内力随其增加而增加.吊杆长度及阻尼器的阻尼系数对截面内力的影响 较小.阻尼系数对层间位移及截面内力存在优化值.楼层位移、楼层速度及加速度随阻尼系数减小单调减小. 关键词悬挂结构:地震响应:阻尼:抗弯刚度 分类号TU375.4 Analysis and calculation of seismic responses for suspension structures GAO Lin,LI Chang-hong",GE Nan2,CHEN Hai-bin2) 1)School of Civil and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China 2)Earthquake Engineering Research Center of Hebei Province,Hebei United University,Tangshani 063009,China Corresponding author,E-mail:gaolin_heut@126.com ABSTRACT An exact motion equation for core-wall suspension structure systems was establish by using the Lagrange equation.Con- sidering the effect of large displacement with nonlinearity,the seismic dynamic response time history of the system was solved by the Runge-Kutta method.Calculation results show that the system can significantly decrease the inter-storey drift,velocity and accelera- tion,and the seismic mitigation efficiency is approximately 90%.Sectional bending stiffness has the most significant influence on the sectional force and translational deflection,and the sectional force increases with increasing sectional bending stiffness.However,sus- pender length and the damp coefficient of storey dampers have little influence on the sectional force.The damp coefficient has optimum values to the inter-storey drift and sectional force.The storey drift,velocity and acceleration exhibit monotonous decrease with the damp coefficient. KEY WORDS suspension structures;seismic response;damping:bending stiffness 符号表 第i个悬挂体顶层屋盖阻尼器阻尼系数: my,ky,cg 第i个悬挂体中第ⅰ楼层质量、刚度系数及 0 第i个悬挂体中第楼层阻尼器阻尼系数: 阻尼系数: El 核筒截面抗弯刚度: g(),9(),g(0) 核筒位移振型坐标: 重力加速度: T 第i个悬挂体的连杆长度: u(z,t) 核筒z高度t时刻位移: H 核筒高度: 地震地面加速度. m 核筒质量线密度: 学 无0主0式0 第i个悬挂体顶层屋盖的水平位移、速度 m 第i个悬挂大梁质量: 收稿日期:20130407 DOI:10.13374/j.issn1001-053x.2014.05.020:http:/journals.ustb.edu.cn第 36 卷 第 5 期 2014 年 5 月 北京科技大学学报 Journal of University of Science and Technology Beijing Vol. 36 No. 5 May 2014 悬挂结构地震动力反应分析计算 高 林1,2) ,李长洪1) ,葛 楠2) ,陈海彬2) 1) 北京科技大学土木与环境工程学院,北京 100083 2) 河北联合大学地震工程研究中心,唐山 063009  通信作者,E-mail: gaolin_heut@ 126. com 摘 要 利用拉格朗日方程建立了核筒悬挂结构体系运动方程. 考虑到大位移非线性的影响,采用 Runge-Kutta 方法求解体 系地震动力响应时程. 计算结果表明悬挂体系能明显减小楼层层间位移、速度及加速度,减震效率接近 90% . 核筒截面抗弯 刚度对其截面内力与筒身水平位移影响最显著,截面内力随其增加而增加. 吊杆长度及阻尼器的阻尼系数对截面内力的影响 较小. 阻尼系数对层间位移及截面内力存在优化值. 楼层位移、楼层速度及加速度随阻尼系数减小单调减小. 关键词 悬挂结构; 地震响应; 阻尼; 抗弯刚度 分类号 TU 375. 4 Analysis and calculation of seismic responses for suspension structures GAO Lin1,2)  ,LI Chang-hong1) ,GE Nan2) ,CHEN Hai-bin2) 1) School of Civil and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China 2) Earthquake Engineering Research Center of Hebei Province,Hebei United University,Tangshani 063009,China  Corresponding author,E-mail: gaolin_heut@ 126. com ABSTRACT An exact motion equation for core-wall suspension structure systems was establish by using the Lagrange equation. Con￾sidering the effect of large displacement with nonlinearity,the seismic dynamic response time history of the system was solved by the Runge-Kutta method. Calculation results show that the system can significantly decrease the inter-storey drift,velocity and accelera￾tion,and the seismic mitigation efficiency is approximately 90% . Sectional bending stiffness has the most significant influence on the sectional force and translational deflection,and the sectional force increases with increasing sectional bending stiffness. However,sus￾pender length and the damp coefficient of storey dampers have little influence on the sectional force. The damp coefficient has optimum values to the inter-storey drift and sectional force. The storey drift,velocity and acceleration exhibit monotonous decrease with the damp coefficient. KEY WORDS suspension structures; seismic response; damping; bending stiffness 收稿日期: 2013--04--07 DOI: 10. 13374 /j. issn1001--053x. 2014. 05. 020; http: / /journals. ustb. edu. cn 符号表 Di0 第 i 个悬挂体顶层屋盖阻尼器阻尼系数; Dij 第 i 个悬挂体中第 j 楼层阻尼器阻尼系数; EI 核筒截面抗弯刚度; g 重力加速度; H 核筒高度; m 核筒质量线密度; mi 第 i 个悬挂大梁质量; mij,kij,cij 第 i 个悬挂体中第 j 楼层质量、刚度系数及 阻尼系数; q( t) ,q ·( t) ,q ·· ( t) 核筒位移振型坐标; ri 第 i 个悬挂体的连杆长度; u( z,t) 核筒 z 高度 t 时刻位移; x ·· g 地震地面加速度. xi0,x · i0,x ·· i0 第 i 个悬挂体顶层屋盖的水平位移、速度
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有