正在加载图片...
耿志达等:b对中碳低合金耐磨钢组织和性能的影响 911 粒为16.1μm,实际所测量的晶粒大小为16.7m.根 carbon niobium microalloyed steel./S///nt,2001,41 (11):1373 据Zener理论,初始的钉扎属于非均匀钉扎或者强钉 [5] Ma LQ,Liu Z Y,Jiao S H,et al.Effect of niobium and titanium 扎解钉后发生反常晶粒长大,不同于赵英利和Maale- on dynamic recrystallization behavior of low carbon steels.I Iron kian等实验所得到的一开始就被稳定地钉扎且能够 Steel Res Int,2008,15(3)31 直保持钉扎状态的钉扎类型 Liu W J.A new theory and kinetic modeling of strain-induced pre- cipitation of Nb (CN)in microalloyed austenite.Metall Mater 表3 Zener模型与实际结果对比 Trans A,1995,26(7):1641 Table 3 Contrast between the Zener model and real results [] Suehiro M,Liu Z K,Agren J.Effect of niobium on massive trans- d/nm HD/μm D,/μm formation in ultra-ow carbon steels:a solute drag treatment.Acta 8.9 3.7×10-40.67 16.1 16.7 Mater,1996,44(10):4241 i8] Department of Structure Material Central Iron and Steel Research 4结论 Institute.Technology research and development of microalloying niobium of Iron and Steel Research Institute /The 30th Anniver- (1)0.034%Nb的添加,细化了耐磨钢的原始奥 sary of the development of Nb-steels Technology in China.Beijing, 氏体晶粒,原始奥氏体晶粒大小从61.1μm减小到 2009:103 16.7um,在随后的相变过程中马氏体块和马氏体板条 (钢铁研究总院结构材料研究所.钢铁研究总院铌微合金化 都有一定的细化,在马氏体板条上析出了细小的碳化 技术研发/中国含铌钢技术发展30周年国际研讨会论文 物,尺寸大小在50~200nm之间. 集.北京,2009:103) (2)0.034%Nb的添加,提高了耐磨钢的硬度和 9]Fang L,Liu C J,Jiang M F.Model study on behavior of niobium 冲击韧性,硬度提高HB9,-20℃夏比冲击功提高10 in high carbon rare earth steel.J Iron Steel Res Int,2007,14 J.冲击韧性的提高主要是由于马氏体块的细化,提高 (5):205 了断裂过程中裂纹扩展所需要的能量,硬度的提高主 [10]Morito S,Tanaka H,Konishic R,et al.The morphology and 要是由于晶界强化、位错强化和析出强化,在相同的磨 crystallography of lath martensite in Fe-C alloys.Acta Mater, 2003,51:1789 损条件下,添加微量b的耐磨钢抗磨性能提高了 [11]Morito S,Saito H,Ogawa T,et al.Effect of austenite grain size 3.5%.0.034%Nb的耐磨钢硬度为HB530,-20℃ on the morphology and crystallography of lath martensite in low 夏比冲击功37J,有良好的抗磨性能,是一种良好的耐 carbon steels.ISIJ Int,2005,45 (1):91 磨钢材料. [12]Wang C F,Wang M Q,Shi J,et al.Effect of microstructure re- (3)0.034%Nb的耐磨钢中析出大量的圆形第 finement on the strength and toughness of low alloy martensitic 二相NbC,粒子尺寸分布在6~12nm之间.利用经验 steel.J Mater Sci Technol,2007,23 (5):659 公式和Zener模型,可以很好地解释第二相粒子对奥 [13]Iron and Steel Research Institute of Ministry of Metallurgical In- 氏体晶粒的钉扎作用,属于非均匀钉扎或者强钉扎拖 dustry.Metallurgical Analysis of Alloy Steel Fracture.Beijing: 钉后晶粒发生反常长大,Zener模型中比例系数取 Science Press,1979:41 0.67,不同于先前研究者所观察到的晶粒正常长大的 (治金工业部钢铁研究院.合金钢断口分析金相图谱.北京: 钉扎类型,其比例系数H取0.17. 科学出版社,1979) [14]Grange R A,Hribal C R,Porter L F.Hardness of tempered martensite in carbon and low-alloy steels.Metall Trans A,1977, 参考文献 8:1775 Fu J Y.Development history of Nb-mieroalloying technology and [15]Prawoto Y,Jasmawati N,Sumeru K.Effect of prior austenite progress of Nb-microalloyed steels.Iron Steel,2005,40(8):1 grain size on the morphology and mechanical properties of mar- (付俊岩.Nh微合金化和含铌钢的发展及技术进步.钢铁, tensite in medium carbon steel.J Mater Sci Technol,2012,28 2005,40(8):1) (5):461 2]Maalekian M,Radis R,Militzer M,et al.In situ measurement [16]Fu H G.,Xiao Q,Fu H F.Heat treatment of multi-element low and modelling of austenite grain growth in a Ti/Nb microalloyed alloy wear-resistant steel.Mater Sci Eng,2005,396:206 steel.Acta Mater,2012,60(3):1015 [17]Zhao D W,Cao J C,Zhou X L,et al.Carbonitride precipitation B]Vervynck S,Verbeken K,Thibaux P,et al.Recrystallization-pre- in austenite of a deformed Nb-Mo microalloyed steel.Trans Ma- cipitation interaction during austenite hot deformation of a Nb mi- ter Heat Treat,2012,33(5)91 croalloyed steel.Mater Sci Eng A,2011,528(16):5519 (赵冬伟,曹建春,周晓龙,等.变形Nb-Mo钢中碳氮化物 [4]Abad R,Fernandez A I,Lopez B,et al.Interaction between re- 在奥氏体中的析出.材料热处理学报,2012,33(5):91) crystallization and precipitation during multipass rolling in a low [18]Cao JC,Yong QL,Liu Q Y,et al.Precipitation of microal-耿志达等: Nb 对中碳低合金耐磨钢组织和性能的影响 粒为 16. 1 μm,实际所测量的晶粒大小为 16. 7 μm. 根 据 Zener 理论,初始的钉扎属于非均匀钉扎或者强钉 扎解钉后发生反常晶粒长大,不同于赵英利和 Maale￾kian 等实验所得到的一开始就被稳定地钉扎且能够一 直保持钉扎状态的钉扎类型. 表 3 Zener 模型与实际结果对比 Table 3 Contrast between the Zener model and real results d / nm f H Dlim /μm Dt /μm 8. 9 3. 7 × 10 - 4 0. 67 16. 1 16. 7 4 结论 ( 1) 0. 034% Nb 的添加,细化了耐磨钢的原始奥 氏体晶粒,原始奥氏体晶粒大小从 61. 1 μm 减 小 到 16. 7 μm,在随后的相变过程中马氏体块和马氏体板条 都有一定的细化,在马氏体板条上析出了细小的碳化 物,尺寸大小在 50 ~ 200 nm 之间. ( 2) 0. 034% Nb 的添加,提高了耐磨钢的硬度和 冲击韧性,硬度提高 HB 9,- 20 ℃ 夏比冲击功提高 10 J. 冲击韧性的提高主要是由于马氏体块的细化,提高 了断裂过程中裂纹扩展所需要的能量,硬度的提高主 要是由于晶界强化、位错强化和析出强化,在相同的磨 损条 件 下,添 加 微 量 Nb 的 耐 磨 钢 抗 磨 性 能 提 高 了 3. 5% . 0. 034% Nb 的耐磨钢硬度为 HB 530,- 20 ℃ 夏比冲击功 37 J,有良好的抗磨性能,是一种良好的耐 磨钢材料. ( 3) 0. 034% Nb 的耐磨钢中析出大量的圆形第 二相 NbC,粒子尺寸分布在 6 ~ 12 nm 之间. 利用经验 公式和 Zener 模型,可以很好地解释第二相粒子对奥 氏体晶粒的钉扎作用,属于非均匀钉扎或者强钉扎拖 钉后晶 粒 发 生 反 常 长 大,Zener 模型中比例系数取 0. 67,不同于先前研究者所观察到的晶粒正常长大的 钉扎类型,其比例系数 H 取 0. 17. 参 考 文 献 [1] Fu J Y. Development history of Nb-microalloying technology and progress of Nb-microalloyed steels. Iron Steel,2005,40( 8) : 1 ( 付俊岩. Nb 微合金化和含铌钢的发展及技术进步. 钢铁, 2005,40( 8) : 1) [2] Maalekian M,Radis R,Militzer M,et al. In situ measurement and modelling of austenite grain growth in a Ti /Nb microalloyed steel. Acta Mater,2012,60( 3) : 1015 [3] Vervynck S,Verbeken K,Thibaux P,et al. Recrystallization-pre￾cipitation interaction during austenite hot deformation of a Nb mi￾croalloyed steel. Mater Sci Eng A,2011,528( 16) : 5519 [4] Abad R,Fernandez A I,Lopez B,et al. Interaction between re￾crystallization and precipitation during multipass rolling in a low carbon niobium microalloyed steel. ISIJ Int,2001,41( 11) : 1373 [5] Ma L Q,Liu Z Y,Jiao S H,et al. Effect of niobium and titanium on dynamic recrystallization behavior of low carbon steels. J Iron Steel Res Int,2008,15( 3) : 31 [6] Liu W J. A new theory and kinetic modeling of strain-induced pre￾cipitation of Nb ( CN) in microalloyed austenite. Metall Mater Trans A,1995,26( 7) : 1641 [7] Suehiro M,Liu Z K,gren J. Effect of niobium on massive trans￾formation in ultra-low carbon steels: a solute drag treatment. Acta Mater,1996,44 ( 10) : 4241 [8] Department of Structure Material Central Iron and Steel Research Institute. Technology research and development of microalloying niobium of Iron and Steel Research Institute / / The 30th Anniver￾sary of the development of Nb-steels Technology in China. Beijing, 2009: 103 ( 钢铁研究总院结构材料研究所. 钢铁研究总院铌微合金化 技术研发 / / 中国含铌钢技术发展 30 周年国际研讨会论文 集. 北京,2009: 103) [9] Fang L,Liu C J,Jiang M F. Model study on behavior of niobium in high carbon rare earth steel. J Iron Steel Res Int,2007,14 ( 5) : 205 [10] Morito S,Tanaka H,Konishic R,et al. The morphology and crystallography of lath martensite in Fe--C alloys. Acta Mater, 2003,51: 1789 [11] Morito S,Saito H,Ogawa T,et al. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels. ISIJ Int,2005,45( 1) : 91 [12] Wang C F,Wang M Q,Shi J,et al. Effect of microstructure re￾finement on the strength and toughness of low alloy martensitic steel. J Mater Sci Technol,2007,23( 5) : 659 [13] Iron and Steel Research Institute of Ministry of Metallurgical In￾dustry. Metallurgical Analysis of Alloy Steel Fracture. Beijing: Science Press,1979: 41 ( 冶金工业部钢铁研究院. 合金钢断口分析金相图谱. 北京: 科学出版社,1979) [14] Grange R A,Hribal C R,Porter L F. Hardness of tempered martensite in carbon and low-alloy steels. Metall Trans A,1977, 8: 1775 [15] Prawoto Y,Jasmawati N,Sumeru K. Effect of prior austenite grain size on the morphology and mechanical properties of mar￾tensite in medium carbon steel. J Mater Sci Technol,2012,28 ( 5) : 461 [16] Fu H G,Xiao Q,Fu H F. Heat treatment of multi-element low alloy wear-resistant steel. Mater Sci Eng,2005,396: 206 [17] Zhao D W,Cao J C,Zhou X L,et al. Carbonitride precipitation in austenite of a deformed Nb--Mo microalloyed steel. Trans Ma￾ter Heat Treat,2012,33( 5) : 91 ( 赵冬伟,曹建春,周晓龙,等. 变形 Nb--Mo 钢中碳氮化物 在奥氏体中的析出. 材料热处理学报,2012,33( 5) : 91) [18] Cao J C,Yong Q L,Liu Q Y,et al. Precipitation of microal- · 119 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有