正在加载图片...
·902· 工程科学学报,第39卷,第6期 表2由图7(©)~()中阻抗拟合曲线得到的相关参数 Table 2 Parameters of fitting circuit obtained from Fig.7(e)and (f) 品粒电阻率/品界电阻率/ 样品 C/nF R/0 C2/nF R2/(1052) C3/nF R/(1032) (2cm) (10n.cm) A山203-Si02摻杂 3389 1155 624.8 1.673 619.8 5.385 8928 1.522 Al203-Si02-Zn0掺杂 3710 4383 396.4 4.056 648.3 5.387 3.372×10 1.448 均匀的Al,0,-Si02或Al20,Si02-Zn0包覆层,对钛酸 cal coating method.J Am Ceram Soc,2012,95(5):1628 钡进行掺杂改性,大幅提高了储能密度和储能效率 [5]Wang X R,Zhang Y,Song X Z,et al.Glass additive in barium (2)经电子能量损失谱分析,包覆层元素在晶界 titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties.Eur Ceram Soc,2012, 附近形成明显偏聚,在加入Z0后偏聚更加明显,掺 32(3):559 杂元素大量富集于晶界附近,形成低共熔物质,能有效 [6]Zhong L,Zhu X L,Wu S Y.et al.High dielectric strength and 抑制晶粒长大,提升陶瓷阻抗,降低损耗.高温阻抗分 energy storage density in Ba3 Lns2,TisOs(In La,Sm) 析侧面证明了陶瓷内芯-壳结构的形成,通过拟合则 low-loss dielectric ceramics.J Mater Sci Mater Electron,2013,24 进一步了解了掺杂元素对各部分阻抗的影响. (10):3716 (3)平均晶粒尺寸120nm的储能陶瓷,储能密度 [7]Zhao YY,Xu J W,Zhou C R,et al.High energy storage proper- ties and dieleetric behavior of Bias Naos)BaTi(Ala.s 可达到0.829J·cm3.其储能密度在块体陶瓷中属 Nbo.s),lead-free ferroelectrie ceramies.Ceram Int,2016,42 于一般水平,但是相比其他储能陶瓷材料,此材料的 (2):2221 晶粒尺寸小,原料成本低,成分相对简单,烧结温度 [8]Chauhan A,Patel S,Vaish R,et al.Anti-ferroelectric ceramics 较低. for high energy density capacitors.Mater,2015,8(12):8009 (4)本文中所述的陶瓷材料已经通过中试放大实 [9]Wang T,Jin L,Li CC.et al.Relaxor ferroelectric BaTiO3-Bi 验并取得了较好结果,能够通过流延制备多层器件从 (MgzNb)03 ceramics for energy storage application.J Am Ceram Soc,2015,98(2):559 而进一步大幅提高储能性能.同时,储能陶瓷的研究 [10]Puli V S,Pradhan D K,Chrisey D B,et al.Structure,dielec- 不应仅局限于成分的调节,也应对其结构给予充分的 tric,ferroelectric,and energy density properties of (1-x)BZT- 重视. xBCT ceramic capacitors for energy storage applications.J Mater Sci,2013,48(5):2151 参考文献 [11]Tian Z,Wang X,Zhang Y,et al.Fabrication of BaTiO,-based [1]Shen Z B,Wang X H,Luo B C,et al.BaTiO3-BiYbO;perovs- dielectrics for ultrathin-layer multilayer ceramic capacitor applica- kite materials for energy storage applications.J Mater Chem A, tion by a modified coating approach.Ipn J Appl Phys,2011.50 2015,3(35):18146 (2):25801 [2]Dang Z M,Yuan J K,Yao S H,et al.Flexible nanodielectric [12]Chao S,Dogan F.BaTiO,-SrTiO,layered dielectrics for energy materials with high permittivity for power energy storage.Adr Ma- storage.Mater Lett.2011,65(6):978 ter,2013,25(44):6334 [13]Fisher J G,Lee B K,Brancquart A,et al.Effect of Al2O;dop- [3]Correia T M,MeMillen M,Rokosz M K,et al.A lead-free and ant on abnormal grain growth in BaTiO3.Eur Ceram Soc, high-energy density ceramic for energy storage applications.JAm 2005,25(12):2033 Ceram Soc,2013,96(9):2699 [14]Dong G X,Ma S W,Du J,et al.Dielectric properties and ener- [4]Zhang Y C,Wang X H,Kim J Y,et al.High performance Ba- gy storage density in ZnO-doped Bao.3SroTiO ceramics.Ceram TiO:-based BME-MLCC nanopowder prepared by aqueous chemi- 1nt.2009,35(5):2069工程科学学报,第 39 卷,第 6 期 表 2 由图 7(e) ~ (f)中阻抗拟合曲线得到的相关参数 Table 2 Parameters of fitting circuit obtained from Fig. 7(e) and (f) 样品 C1 / nF R1 / 赘 C2 / nF R2 / (10 5 赘) C3 / nF R3 / (10 5 赘) 晶粒电阻率/ (赘·cm) 晶界电阻率/ (10 6 赘·cm) Al2O3 鄄鄄 SiO2掺杂 3389 1155 624郾 8 1郾 673 619郾 8 5郾 385 8928 1郾 522 Al2O3 鄄鄄 SiO2 鄄鄄ZnO 掺杂 3710 4383 396郾 4 4郾 056 648郾 3 5郾 387 3郾 372 伊 10 4 1郾 448 均匀的 Al 2O3 鄄鄄 SiO2或 Al 2O3 鄄鄄 SiO2 鄄鄄 ZnO 包覆层,对钛酸 钡进行掺杂改性,大幅提高了储能密度和储能效率. (2)经电子能量损失谱分析,包覆层元素在晶界 附近形成明显偏聚,在加入 ZnO 后偏聚更加明显,掺 杂元素大量富集于晶界附近,形成低共熔物质,能有效 抑制晶粒长大,提升陶瓷阻抗,降低损耗. 高温阻抗分 析侧面证明了陶瓷内芯鄄鄄 壳结构的形成,通过拟合则 进一步了解了掺杂元素对各部分阻抗的影响. (3)平均晶粒尺寸 120 nm 的储能陶瓷,储能密度 可达到 0郾 829 J·cm - 3 . 其储能密度在块体陶瓷中属 于一般水平,但是相比其他储能陶瓷材料,此材料的 晶粒尺寸小,原料成本低,成分相对简单,烧结温度 较低. (4)本文中所述的陶瓷材料已经通过中试放大实 验并取得了较好结果,能够通过流延制备多层器件从 而进一步大幅提高储能性能. 同时,储能陶瓷的研究 不应仅局限于成分的调节,也应对其结构给予充分的 重视. 参 考 文 献 [1] Shen Z B, Wang X H, Luo B C, et al. BaTiO3 鄄鄄 BiYbO3 perovs鄄 kite materials for energy storage applications. J Mater Chem A, 2015, 3(35): 18146 [2] Dang Z M, Yuan J K, Yao S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage. Adv Ma鄄 ter, 2013, 25(44): 6334 [3] Correia T M, McMillen M, Rokosz M K, et al. A lead鄄free and high鄄energy density ceramic for energy storage applications. J Am Ceram Soc, 2013, 96(9): 2699 [4] Zhang Y C, Wang X H, Kim J Y, et al. High performance Ba鄄 TiO3 鄄based BME鄄鄄MLCC nanopowder prepared by aqueous chemi鄄 cal coating method. J Am Ceram Soc, 2012, 95(5): 1628 [5] Wang X R, Zhang Y, Song X Z, et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J Eur Ceram Soc, 2012, 32(3): 559 [6] Zhong L, Zhu X L, Wu S Y, et al. High dielectric strength and energy storage density in Ba6 - 3x Ln8 + 2x Ti18 O54 ( Ln = La, Sm) low鄄loss dielectric ceramics. J Mater Sci Mater Electron, 2013, 24 (10): 3716 [7] Zhao Y Y, Xu J W, Zhou C R, et al. High energy storage proper鄄 ties and dielectric behavior of (Bi0郾 5Na0郾 5 )0郾 94 Ba0郾 06 Ti1 - x (Al0郾 5 Nb0郾 5 ) xO3 lead鄄free ferroelectric ceramics. Ceram Int, 2016, 42 (2): 2221 [8] Chauhan A, Patel S, Vaish R, et al. Anti鄄ferroelectric ceramics for high energy density capacitors. Mater, 2015, 8(12): 8009 [9] Wang T, Jin L, Li C C, et al. Relaxor ferroelectric BaTiO3 鄄鄄 Bi (Mg2 / 3Nb1 / 3 ) O3 ceramics for energy storage application. J Am Ceram Soc, 2015, 98(2): 559 [10] Puli V S, Pradhan D K, Chrisey D B, et al. Structure, dielec鄄 tric, ferroelectric, and energy density properties of (1 - x)BZT鄄鄄 xBCT ceramic capacitors for energy storage applications. J Mater Sci, 2013, 48(5): 2151 [11] Tian Z, Wang X, Zhang Y, et al. Fabrication of BaTiO3 鄄based dielectrics for ultrathin鄄layer multilayer ceramic capacitor applica鄄 tion by a modified coating approach. Jpn J Appl Phys, 2011, 50 (2): 25801 [12] Chao S, Dogan F. BaTiO3 鄄鄄 SrTiO3 layered dielectrics for energy storage. Mater Lett, 2011, 65(6): 978 [13] Fisher J G, Lee B K, Brancquart A, et al. Effect of Al2O3 dop鄄 ant on abnormal grain growth in BaTiO3 . J Eur Ceram Soc, 2005, 25(12): 2033 [14] Dong G X, Ma S W, Du J, et al. Dielectric properties and ener鄄 gy storage density in ZnO鄄doped Ba0郾 3 Sr0郾 7 TiO3 ceramics. Ceram Int, 2009, 35(5): 2069 ·902·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有