正在加载图片...
第9期 曾莉等:高体积分数SCpA复合材料杯形件高温反挤压成形 .1191. 的变形温度和较大的挤压速度条件下,高温反挤压 [4]Xu FM,Wu L C Han G W,et al Campression creep behavior 后的复合材料颗粒尺寸随着变形温度的升高和挤压 of high vohme fraction of SC particles reinforced Al camnposite 速度的减小而降低.由图10(c)可以看出,当变形 fabricated by pressumeless infiltration Chin J Aemonaut 2007,20 (2):115 温度较高、挤压速度较小时,颗粒无明显断裂,原因 [5]Guo SW,LiL B ZhangG Y.etal Adhesion analysis ofelectmo" 在于:在变形温度较低、反挤压速度较大的条件下, less Ni coating on SCp/AI camposite m iror substrate Rare Met 复合材料杯形件内角处的变形量大,颗粒容易破碎; Mater Eng200837(6):960 而在较高的变形温度和较低的应变速率下进行反挤 (国绍文,李丽波,张广玉,等.SCpA1复合材料反射镜坯表 压,颗粒随基体协调变形的能力强,复合材料的成形 面镀镍层的结合分析·稀有金属材料与工程,200837(6): 960) 性好, [6]Lu JW,Zheng ZX.W ang JM.Pressureless infiltration of liqud 3结论 ahm inum alloy nto SC prefoms to fom nearnet shape SC/Al composites J Allbys Camnpd 2008 465(1/2):239 (1)在高体积分数SCp/A1复合材料高温反挤 [7]He C L Zhou Q Lu JT:Effect of size of rein forcement on thick- 压过程的变形初期,复合材料的变形大致分为三个 ness of anodized coatings on ST/AI matrix camnposites Mater Lctt200862(16):2441 阶段:变形初期的低变形抗力阶段一变形抗力随 [8]Shao Y F.XiQ F.Bemd L et al Effects of particle size parti 变形量增加无明显变化;颗粒转动、破碎阶段一颗 cle/matrix nterface adhesion and particle loading on mechanical 粒与基体协调变形,变形抗力随变形量增加而缓慢 pmoperties of particulale-polymer composites Campos Part B 增大;后期的高变形抗力阶段一当变形达到一定 200839(6):933 程度后,颗粒转动阻力增大,颗粒与基体协调变形能 [9]KaskelS K mw iec P.Themal stability of high surface ara silicon catbile materials J Solid State Che.2006 179(8):2281 力变差,变形抗力随变形量的增加而迅速上升, [10]SabooriM.Bakhshi JM.NooraniA M.et al Experinental and (2)高体积分数S℃p/A1复合材料通过反挤压 numerical study of energy consumption n fowwand and backwan 方式,在适当的变形条件下(800℃4.5mm· md extrusion JMater Process Technol 2006,177(1/3):612 mn),可成形表面质量较好的杯形件. [11]Kin S H.Chung S W.Padmanaban S Investigation of hbrica- (3)高体积分数S℃p/A1复合材料高温反挤压 tion effect on the backwan extmusion of thinwalled rectangular 变形后,基体仍保持连续,颗粒分布均匀性较好,当 ahm num case with large aspect ratio J Ma ter Pmocess Technol 2006180(13):185 变形温度较低、挤压速度较大时,复合材料高温反挤 [12]RaaK U.Henry V.Physical and numerical analysis of the met 压后的组织、颗粒大小不均匀,杯形件内角处颗粒较 al flw over the punch head n backwand cup extmusion of alm n- 小;当变形温度较高、挤压速度较小时,复合材料杯 im JMater Pmocess Technol 2006 172(2):312 形件内部颗粒尺寸均匀· [13]Em il E UlfE Process characterization and material flow in mi cmofom ing at elvated temperatures J Manuf Pmoesses 2004.6 参考文献 (1):1 [1]Yang Z Y.Han JM.LiW J etal Stdy on fmachire behavior of [14]Li JH.LiC F The effect of backwand extmuision on the whisker SCp/A356 camposites Rare Met 2006.25(Suppl2):168 mopholgy ofSCw /6061A I JMater P mcess Technol 2004.151 [2]Guo H M.YangM J Hu B Rheocasting of A356 alboy by low su- (13):302 petheat pourng with a shearng field Acta Metall Sin Engl Ed [15]Shin T J Lee Y H.Yeam JT et al Pmcess optinal design in 200619(5):328 non-isothemal backwand extmusion of a titanim alloy by the finite [3]Cui Y,W ang L F:Ren J Y.Multi-functional S/AI composites ekment method Camput Methods Appl Mech Eng 2005 194 for aemospace applications Chin J Aemonaut 2008 21(6):578 (3638):3838第 9期 曾 莉等: 高体积分数 SiCp/Al复合材料杯形件高温反挤压成形 的变形温度和较大的挤压速度条件下‚高温反挤压 后的复合材料颗粒尺寸随着变形温度的升高和挤压 速度的减小而降低.由图 10(c)可以看出‚当变形 温度较高、挤压速度较小时‚颗粒无明显断裂.原因 在于:在变形温度较低、反挤压速度较大的条件下‚ 复合材料杯形件内角处的变形量大‚颗粒容易破碎; 而在较高的变形温度和较低的应变速率下进行反挤 压‚颗粒随基体协调变形的能力强‚复合材料的成形 性好. 3 结论 (1) 在高体积分数 SiCp/Al复合材料高温反挤 压过程的变形初期‚复合材料的变形大致分为三个 阶段:变形初期的低变形抗力阶段———变形抗力随 变形量增加无明显变化;颗粒转动、破碎阶段———颗 粒与基体协调变形‚变形抗力随变形量增加而缓慢 增大;后期的高变形抗力阶段———当变形达到一定 程度后‚颗粒转动阻力增大‚颗粒与基体协调变形能 力变差‚变形抗力随变形量的增加而迅速上升. (2) 高体积分数 SiCp/Al复合材料通过反挤压 方式‚在 适 当 的 变 形 条 件 下 (800℃/4∙5mm· min —1 )‚可成形表面质量较好的杯形件. (3) 高体积分数 SiCp/Al复合材料高温反挤压 变形后‚基体仍保持连续‚颗粒分布均匀性较好.当 变形温度较低、挤压速度较大时‚复合材料高温反挤 压后的组织、颗粒大小不均匀‚杯形件内角处颗粒较 小;当变形温度较高、挤压速度较小时‚复合材料杯 形件内部颗粒尺寸均匀. 参 考 文 献 [1] YangZY‚HanJM‚LiW J‚etal.Studyonfracturebehaviorof SiCp/A356composites.RareMet‚2006‚25(Suppl2):168 [2] GuoHM‚YangMJ‚HuB.RheocastingofA356alloybylowsu- perheatpouringwithashearingfield.ActaMetallSinEnglEd‚ 2006‚19(5):328 [3] CuiY‚WangLF‚RenJY.Multi-functionalSiC/Alcomposites foraerospaceapplications.ChinJAeronaut‚2008‚21(6):578 [4] XuFM‚WuLC‚HanGW‚etal.Compressioncreepbehavior ofhighvolumefractionofSiCparticlesreinforcedAlcomposite fabricatedbypressurelessinfiltration.ChinJAeronaut‚2007‚20 (2):115 [5] GuoSW‚LiLB‚ZhangGY‚etal.Adhesionanalysisofelectro- lessNicoatingonSiCp/Alcompositemirrorsubstrate.RareMet MaterEng‚2008‚37(6):960 (国绍文‚李丽波‚张广玉‚等.SiCp/Al复合材料反射镜坯表 面镀镍层的结合分析.稀有金属材料与工程‚2008‚37(6): 960) [6] LiuJW‚ZhengZX‚WangJM.Pressurelessinfiltrationofliquid aluminumalloyintoSiCpreformstoform near-net-shapeSiC/Al composites.JAlloysCompd‚2008‚465(1/2):239 [7] HeCL‚ZhouQ‚LiuJT.Effectofsizeofreinforcementonthick- nessofanodizedcoatingsonSiC/Almatrixcomposites.Mater Lett‚2008‚62(16):2441 [8] ShaoYF‚XiQF‚BerndL‚etal.Effectsofparticlesize‚parti- cle/matrixinterfaceadhesionandparticleloadingonmechanical propertiesofparticulate– polymercomposites.ComposPartB‚ 2008‚39(6):933 [9] KaskelS‚KrawiecP.Thermalstabilityofhighsurfaceareasilicon carbidematerials.JSolidStateChem‚2006‚179(8):2281 [10] SabooriM‚BakhshiJM‚NooraniAM‚etal.Experimentaland numericalstudyofenergyconsumptioninforwardandbackward rodextrusion.JMaterProcessTechnol‚2006‚177(1/3):612 [11] KimSH‚ChungSW‚PadmanabanS.Investigationoflubrica- tioneffectonthebackwardextrusionofthin-walledrectangular aluminumcasewithlargeaspectratio.JMaterProcessTechnol‚ 2006‚180(1/3):185 [12] RamaKU‚HenryV.Physicalandnumericalanalysisofthemet- alflowoverthepunchheadinbackwardcupextrusionofalumin- ium.JMaterProcessTechnol‚2006‚172(2):312 [13] EmilE‚UlfE.Processcharacterizationandmaterialflowinmi- croformingatelevatedtemperatures.JManufProcesses‚2004‚6 (1):1 [14] LiJH‚LiCF.Theeffectofbackwardextrusiononthewhisker morphologyofSiCw/6061Al.JMaterProcessTechnol‚2004‚151 (1/3):302 [15] ShinTJ‚LeeYH‚YeomJT‚etal.Processoptimaldesignin non-isothermalbackwardextrusionofatitaniumalloybythefinite elementmethod.ComputMethodsApplMechEng‚2005‚194 (36/38):3838 ·1191·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有