正在加载图片...
第5页 Hamilton原理告诉我们,在一切(运动学上允许的)可能路径中,真实运动的(即由力学规 律决定的)路径使作用量S取极值 根据上面的讨论可知,作用量S取极值的必要条件的积分形式和微分形式分别是 1 TOL Sql dt=0 a d aL 在给定的有势力场中,写出 Lagrange量L的具体形式,就会发现,它和 Newton力学的动力学方 程完全一样 现在讨论泛函 Jy=/F(, y,y)da 的两种常见的特殊情形 ★泛函中的F=F(x,y)不显含 这时的 Euler- Lagrange方程就是 d aF do ay' 所以,立即就可以得到它的首次积分 常量C. dy' ★泛函中的F=F(y,3)不显含x 容易证明 drls-/ - of., d OF aF,aF d「,aF af d aF dy dr ay 所以,这时的 Euler- Lagrange方程也可以有首次积分 F=常量C 把这个结果应用到例31.3中,如果 Lagrange量L不显含t,则有 L q-L=常量C 这就是能量守恒 面研究二元函数的情形.设有二元函数u(x,y),(x,y)∈S,在此基础上可以定义泛函Wu Chong-shi ￾✁✂✄☎ ✆ ✝ ✞ ✟ ✠ ✡ 5 ☛ Hamilton ➊➋ ➌➍éê✢ ➎ ❥➏ (➐➑➒➓➔→➫ ) ➣↔↕➙➛✢➜➝➐➑➫ (➞➟➠➒➡ ➢➤➥➫ ) ↕➙➦➧➨➩ S ❜❝❡ ✲ ➫➭◆▼✱➯➲✶ó ✢ ✝ í ✰ S ➢ ✺❈ ✱✼➐➣↔✱îïâã❵ s ï âãï❴ ★ δS = Z t1 t0 h ∂L ∂q δq + ∂L ∂q˙ δq˙ i dt = 0 ❵ ∂L ∂q − d dt ∂L ∂q˙ = 0. ❁✾✿✱❉✰ ✆➂ è ✢ ➇ ✪ Lagrange ✰ L ✱➛➳âã✢ ✧➵➸➺✢ ð ❵ Newton ✆➻✱✥✆➻❈ r➼➽❇➡✲ ➺❁➯➲✛✜ J[y] = Z x1 x0 F(x, y, y0 ) dx ✱❳❛➍➾✱➚➪➶â ✲ F ✛✜ è✱ F = F(x, y0 ) ❲ ❯➏ y ✳✓✱ Euler–Lagrange ❈r✧★ d dx ∂F ∂y0 = 0, ✻ ✩ ✢ ➁❩✧✶✩❛ ✑ ð✱➹➘îï ∂F ∂y0 = ➍✰ C. F ✛✜ è✱ F = F(y, y0 ) ❲ ❯➏ x ➴➷➬ ➮✢ d dx h y 0 ∂F ∂y0 − F i =y 00 ∂F ∂y0 + y 0 d dx ∂F ∂y0 − ∂F ∂y y 0 − ∂F ∂y0 y 00 = − y 0 h ∂F ∂y − d dx ∂F ∂y0 i , ✻ ✩ ✢ ✳✓✱ Euler–Lagrange ❈r❨ ✶✩❉➹➘îï y 0 ∂F ∂y0 − F = ➍✰ C. ➱✳✫✃ö ❍í✑❐ 31.3 è ✢ õö Lagrange ✰ L ❲ ❯➏ t ✢ ➉❉ q˙ ∂L ∂q˙ − L = ➍✰ C, ✳✧★ ↔➩❒❮ ✲ ✞▼❰Ï➞÷✜✬✱➶â ✲❑❉➞÷✜✬ u(x, y), (x, y) ∈ S ✢ ❁Ð❽Ñ◆ ✶✩✿❀✛✜ J[u] = ZZ S F(x, y, u, ux, uy) dx dy
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有