正在加载图片...
马磊磊等:高能量密度锂离子电池层状锰基正极材料研究进展 ·173· ges of Li-rich layered oxide 0.5Li MnO30.5LiNio2 Coo. [16]Bareno J,Lei C H,Wen J G.et al.Local structure of layered Mno material investigated by a novel technique combining oxide electrode materials for lithium-ion batteries.Ade Mater, in situ XRD and a multipotential step.ACS Appl Mater 2010,22(10):1122 Interfaces,2014,6(15):13271 [17]Ohzuku T.Nagayama M,Tsuji K,et al.High-capacity lithium [3]Lin C K,Piao Y,Kan Y C,et al.Probing thermally induced insertion materials of lithium nickel manganese oxides for ad- decomposition of delithiated Li.Nio.s Mno ssCoo.O by in- vanced lithium-ion batteries:toward rechargeable capacity more situ high energy X-ray diffraction.ACS Appl Mater Interfaces, than 300 mA h g-.J Mater Chem,2011,21:10179 2014,6(15):12692 [18]Johnson C S,Kim J S,Lefief C,et al.The significance of the [4]Yu X Q,Lyu Y C.Gu L,et al.Understanding the rate capabil- Liz MnO,component in composite'xLiz Mn03.(1 -x) ity of high-energy-density Li-rich layered Li.2 Nio.is Coo.Mno ss- LiMno.s Nio.50 electrodes.Electrochem Commun,2004,6 02 cathode materials.Adv Energy Mater,2014,4(5):1 (10):1085 [5]Shen C H,Wang Q,Fu F,et al.Facile synthesis of the Li-rich [19]Lu Z H,Dahn J R.Understanding the anomalous capacity of layered oxide Li Ni Coo.Mno60 with superior lithium Li/Li[Ni,Li)Mn(2-3)]02 cells using in situ X-ray storage performance and new insights into structural transforma- diffraction and electrochemical studies.J Electrochem Soc. tion of the layered oxide material during charge-discharge cycle: 2002,149(7):A815 in situ XRD characterization.ACS Appl Mater Interfaces,2014, [20]Cao T T,Shi C S,Zhao N Q,et al.Understanding the electro- 6(8):5516 chemical properties of Li-rich cathode materials from first-princi- [6]Hy S,Felix F,Rick J,et al.Direct in situ observation of Li2O ples calculations.J Phys Chem C,2015,119(52):28749 evolution on Li-rich high-capacity cathode material, [21]Armstrong A R,Holzapfel M,NovaAk P,et al.Demonstrating Lit Ni,Li(Mn(]0(.5).JAm Chem Soc, oxygen loss and associated structural reorganization in the lithi- 2014,136(3):999 um battery cathode Li[Nio.2Li Mn.6]02.J Am Chem Soc, [7]Yang F F,Liu YJ,Martha S K,et al.Nanoscale morphological 2006,128(26):8694 and chemical changes of high voltage lithium-manganese rich [22]Yabuuchi N,Yoshii K,Myung ST,et al.Detailed studies of a NMC composite cathodes with eycling.Nano Lett,2014,14 high-capacity electrode material for rechargeable batteries, (8):4334 Liz MnO3-LiCo Ni Mn02.J Am Chem Soc,2011,133 [8]Yu H J,Zhou H S.High-energy cathode materials Li,MnO- (12):4404 LiMO2)for lithium-ion batteries.J Phys Chem Lett,2013.4 [23]Song B H.Day S J.Sui T,et al.Mitigated phase transition (8):1268 during first cyele of a Li-rich layered cathode studied by in ope- [9]Jarvis K A,Deng Z Q.Allard L.F,et al.Atomic structure of a rando synchrotron X-ray powder diffraction.Phys Chem Chem lithium-rich layered oxide material for lithium-ion batteries:evi- Phys,2016,18(6):4745 dence of a solid solution.Chem Mater,2011,23(16):3614 [24]Mohanty D,Li J L,Abraham D P,et al.Unraveling the volt- [10]Gao M,Lian F,Qiu W H,et al.Rate capability of age-fade mechanism in high-energy-density lithium-ion batter- Li[Li Mno.ss Nio.25 ]02 as high-capacity cathode materials. ies:origin of the tetrahedral cations for spinel conversion.Chem J Univ Sci Technol Beijing,2013,35(1):78 Mater,2014,26(21):6272 (高敏,连芳,仇卫华,等.高容量正极材料 [25 Croy J R,Gallagher K G,Balasubramanian M,et al.Quantif- Li[Lia.nMna.sNia.s]02的倍率性能.北京科技大学学报, ying hysteresis and voltage fade in xLiz Mn03.(1 -x) 2013,35(1):78) LiMno.s Nio.s02 electrodes as a function of Li2 MnO;content.J [11]Zheng J M.Gu M.Genc A,et al.Mitigating voltage fade in Electrochem Soc,2013,161(3):A318 cathode materials by improving the atomic level uniformity of el- [26]Bettge M,Li Y,Gallagher K,et al.Voltage fade of layered ox- emental distribution.Nano Lett,2014,14(5):2628 ides:its measurement and impact on energy density.J [12]Koga H,Croguennee L,Mannessiez P,et al.Li1.20 Mnos4- Electrochem Soc,2013,160(11):A2046 CooNio.with different particle sizes as attractive positive [27]Gallagher K G,Croy J R,Balasubramanian M,et al.Correla- electrode materials for lithium-ion batteries:insights into their ting hysteresis and voltage fade in lithium-and manganese-rich structure.J Phys Chem C,2012,116(25):13497 layered transition-metal oxide electrodes.Electrochem Commun, [13]Long B R,Croy JR,Dogan F,et al.Effect of cooling rates on 2013,33:96 phase separation in 0.5Li2 Mn0;.0.5LiCo02 electrode materi- [28]Zheng J M,Xu P H,Gu M,et al.Structural and chemical als for Li-ion batteries.Chem Mater,2014,26(11):3565 evolution of Li-and Mn-rich lavered cathode material.Chem [14]Yu H J,Ishikawa R,So Y G,et al.Direct atomic-resolution Mater,2015,27(4):1381 observation of two phases in the Li Mno.567 Nia Coo.702 [29]Yan P F,Nie A M,Zheng J M,et al.Evolution of lattice cathode material for lithium-ion batteries.Angew Chem Int Ed, structure and chemical composition of the surface reconstruction 2013,52(23):5969 layer in Li.Ni.2 Mno.02 cathode material for lithium ion bat- [15]Yoon W S,Kim N,Yang X Q,et al.Li MAS NMR and in teries.Nano Lett,2015,15(1)514 situ X-ray studies of lithium nickel manganese oxides.Power [30]Hong J,Lim H D,Lee M,et al.Critical role of oxygen evolved Souc5,2003,119-121:649 from layered Li-excess metal oxides in lithium rechargeable bat-马磊磊等: 高能量密度锂离子电池层状锰基正极材料研究进展 ges of Li鄄rich layered oxide 0郾 5Li2 MnO3·0郾 5LiNi0郾 292 Co0郾 375 鄄 Mn0郾 333O2 material investigated by a novel technique combining in situ XRD and a multipotential step. ACS Appl Mater Interfaces, 2014, 6(15) : 13271 [3] Lin C K, Piao Y, Kan Y C, et al. Probing thermally induced decomposition of delithiated Li1郾 2 - xNi0郾 15 Mn0郾 55 Co0郾 1O2 by in鄄 situ high energy X鄄ray diffraction. ACS Appl Mater Interfaces, 2014, 6(15) : 12692 [4] Yu X Q, Lyu Y C, Gu L, et al. Understanding the rate capabil鄄 ity of high鄄energy鄄density Li鄄rich layered Li1郾 2Ni0郾 15 Co0郾 1 Mn0郾 55 鄄 O2 cathode materials. Adv Energy Mater, 2014, 4(5) : 1 [5] Shen C H, Wang Q, Fu F, et al. Facile synthesis of the Li鄄rich layered oxide Li1郾 23 Ni0郾 09 Co0郾 12 Mn0郾 56 O2 with superior lithium storage performance and new insights into structural transforma鄄 tion of the layered oxide material during charge鄄鄄discharge cycle: in situ XRD characterization. ACS Appl Mater Interfaces, 2014, 6(8) : 5516 [6] Hy S, Felix F, Rick J, et al. Direct in situ observation of Li2O evolution on Li鄄rich high鄄capacity cathode material, Li[Ni xLi(1 - 2x) / 3 Mn(2 - x) / 3 ]O2 (0臆x臆0郾 5) . J Am Chem Soc, 2014, 136(3) : 999 [7] Yang F F, Liu Y J, Martha S K, et al. Nanoscale morphological and chemical changes of high voltage lithium鄄manganese rich NMC composite cathodes with cycling. Nano Lett, 2014, 14 (8) : 4334 [8] Yu H J, Zhou H S. High鄄energy cathode materials ( Li2 MnO3 鄄鄄 LiMO2 ) for lithium鄄ion batteries. J Phys Chem Lett, 2013, 4 (8) : 1268 [9] Jarvis K A, Deng Z Q, Allard L F, et al. Atomic structure of a lithium鄄rich layered oxide material for lithium鄄ion batteries: evi鄄 dence of a solid solution. Chem Mater, 2011, 23(16) : 3614 [10] Gao M, Lian F, Qiu W H, et al. Rate capability of Li[Li0郾 17 Mn0郾 58Ni0郾 25 ]O2 as high鄄capacity cathode materials. J Univ Sci Technol Beijing, 2013, 35(1) : 78 (高 敏, 连 芳, 仇 卫 华, 等. 高 容 量 正 极 材 料 Li[Li0郾 17 Mn0郾 58Ni0郾 25 ]O2的倍率性能. 北京科技大学学报, 2013, 35(1) : 78) [11] Zheng J M, Gu M, Genc A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of el鄄 emental distribution. Nano Lett, 2014, 14(5) : 2628 [12] Koga H, Croguennec L, Mannessiez P, et al. Li1郾 20 Mn0郾 54 鄄 Co0郾 13Ni0郾 13O2 with different particle sizes as attractive positive electrode materials for lithium鄄ion batteries: insights into their structure. J Phys Chem C, 2012, 116(25) : 13497 [13] Long B R, Croy J R, Dogan F, et al. Effect of cooling rates on phase separation in 0郾 5Li2 MnO3·0郾 5LiCoO2 electrode materi鄄 als for Li鄄ion batteries. Chem Mater, 2014, 26(11) : 3565 [14] Yu H J, Ishikawa R, So Y G, et al. Direct atomic鄄resolution observation of two phases in the Li1郾 2 Mn0郾 567 Ni0郾 166 Co0郾 067 O2 cathode material for lithium鄄ion batteries. Angew Chem Int Ed, 2013, 52(23) : 5969 [15] Yoon W S, Kim N, Yang X Q, et al. 6 Li MAS NMR and in situ X鄄ray studies of lithium nickel manganese oxides. J Power Sources, 2003, 119鄄鄄121: 649 [16] Bare觡o J, Lei C H, Wen J G, et al. Local structure of layered oxide electrode materials for lithium鄄ion batteries. Adv Mater, 2010, 22(10) : 1122 [17] Ohzuku T, Nagayama M, Tsuji K, et al. High鄄capacity lithium insertion materials of lithium nickel manganese oxides for ad鄄 vanced lithium鄄ion batteries: toward rechargeable capacity more than 300 mA h g - 1 . J Mater Chem, 2011, 21: 10179 [18] Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2 MnO3 component in ‘ composite 爷 xLi2 MnO3·( 1 - x ) LiMn0郾 5 Ni0郾 5 O2 electrodes. Electrochem Commun, 2004, 6 (10) : 1085 [19] Lu Z H, Dahn J R. Understanding the anomalous capacity of Li / Li[Ni xLi(1 / 3 - 2x / 3) Mn(2 / 3 - x / 3) ]O2 cells using in situ X鄄ray diffraction and electrochemical studies. J Electrochem Soc, 2002, 149(7) : A815 [20] Cao T T, Shi C S, Zhao N Q, et al. Understanding the electro鄄 chemical properties of Li鄄rich cathode materials from first鄄princi鄄 ples calculations. J Phys Chem C, 2015, 119(52) : 28749 [21] Armstrong A R, Holzapfel M, Nova魦k P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithi鄄 um battery cathode Li[Ni0郾 2 Li 0郾 2 Mn0郾 6 ]O2 . J Am Chem Soc, 2006, 128(26) : 8694 [22] Yabuuchi N, Yoshii K, Myung S T, et al. Detailed studies of a high鄄capacity electrode material for rechargeable batteries, Li2 MnO3 鄄鄄LiCo1 / 3Ni1 / 3 Mn1 / 3O2 . J Am Chem Soc, 2011, 133 (12) : 4404 [23] Song B H, Day S J, Sui T , et al. Mitigated phase transition during first cycle of a Li鄄rich layered cathode studied by in ope鄄 rando synchrotron X鄄ray powder diffraction. Phys Chem Chem Phys, 2016, 18(6) :4745 [24] Mohanty D, Li J L, Abraham D P, et al. Unraveling the volt鄄 age鄄fade mechanism in high鄄energy鄄density lithium鄄ion batter鄄 ies: origin of the tetrahedral cations for spinel conversion. Chem Mater, 2014, 26(21) : 6272 [25] Croy J R, Gallagher K G, Balasubramanian M, et al. Quantif鄄 ying hysteresis and voltage fade in xLi2 MnO3 ·( 1 - x ) LiMn0郾 5Ni0郾 5O2 electrodes as a function of Li2 MnO3 content. J Electrochem Soc, 2013, 161(3) : A318 [26] Bettge M, Li Y, Gallagher K, et al. Voltage fade of layered ox鄄 ides: its measurement and impact on energy density. J Electrochem Soc, 2013, 160(11) : A2046 [27] Gallagher K G, Croy J R, Balasubramanian M, et al. Correla鄄 ting hysteresis and voltage fade in lithium鄄and manganese鄄rich layered transition鄄metal oxide electrodes. Electrochem Commun, 2013, 33:96 [28] Zheng J M, Xu P H, Gu M, et al. Structural and chemical evolution of Li鄄 and Mn鄄rich layered cathode material. Chem Mater, 2015, 27(4) : 1381 [29] Yan P F, Nie A M, Zheng J M, et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1郾 2Ni0郾 2 Mn0郾 6O2 cathode material for lithium ion bat鄄 teries. Nano Lett, 2015, 15(1) : 514 [30] Hong J, Lim H D, Lee M, et al. Critical role of oxygen evolved from layered Li鄄excess metal oxides in lithium rechargeable bat鄄 ·173·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有