基本微分公式① 由=∫'(x):可得下列基本微分公式 d(C)=0 d(x“)=x4-ld d(sin x)=cos xdx d(cosx)=-sin xdx d(tanx)=sec2 xdx d(cotx)=-csc2 xdx d(sec x)=sec xtan xdx d(cscx)=-cscxcot xdx d(ax)=ax Inadx d(ex)=exdx d(loga x)= x xIna Mn)=1基本微分公式 由 dy = f (x)dx可 得下 列基 本微分公 式 d(C) = 0 d x x dx 1 ( ) − = d(sin x) = cos xdx d(cos x) = −sin xdx d x xdx 2 (tan ) = sec d x xdx 2 (cot ) = −csc d(sec x) = sec x tan xdx d(csc x) = −csc x cot xdx d a a adx x x ( ) = ln d e e dx x x ( ) = dx x a d a x ln 1 (log ) = dx x d x 1 (ln ) =